• Title/Summary/Keyword: Environmental Risk Assessment

Search Result 1,512, Processing Time 0.035 seconds

Human Risk Assessment of Perchloroethylene Considering Multi-media Exposure (다매체 노출을 고려한 Perchloroethylene의 인체위해성평가연구)

  • Seo, Jungkwan;Kim, Taksoo;Jo, Areum;Kim, Pilje;Choi, Kyunghee
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.5
    • /
    • pp.397-406
    • /
    • 2014
  • Objectives: Perchloroethylene (PCE) is a volatile chemical widely used as a solvent in the dry-cleaning and textile processing industries. It was evaluated as Group 2 "probably carcinogenic to humans" by the Integrated Risk Information System (IRIS) of the United State Environmental Protection Agency (U.S. EPA) in 2012. In order to provide a scientific basis for establishing risk management measures for chemicals on the national priority substances list, aggregate risk assessment was conducted for PCE, included in the top-10 substances. Methods: We conducted the investigation and monitoring of PCE exposure (e.g., exposure scenario, detection levels, and exposure factors, etc.) and assessed its multi-media (e.g., outdoor air, indoor air, and ground water) exposure risk with a deterministic and probabilistic approach. Results: In human risk assessment (HRA), the level of human exposure was higher in the younger age group. The exposure level through inhalation at home was the highest among the exposure routes. Outdoor air or uptake of drinking water represented less than 1% of total contributions to PCE exposure. These findings suggested that the level of risk was negligible since the Hazard Index (HI) induced by HRA was below one among all age groups, with a maximum HI value of 0.17 when reasonable maximum exposure was applied. Conclusion: In conclusion, it was suggested that despite low exposure risk, further studies are needed considering main sources, including occupational exposure.

Human Health Risk Assessment Strategy to Evaluate Non-carcinogenic Adverse Health Effect from Total Petroleum Hydrocarbon at POL-Contaminated Sites in Korea (국내 유류오염지역에서의 석유계총탄화수소에 의한 비발암 인체위해성평가 전략)

  • Park, In-Sun;Park, Jae-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.4
    • /
    • pp.10-22
    • /
    • 2011
  • Human health risk assessment for petroleum, oil and lubricant (POL) contaminated sites is challenging as total petroleum hydrocarbon (TPH) is not a single compound but rather a mixture of numerous substances. To address this concern, several TPH fractionation approaches have been proposed and used as an effective management tool for the POL-contaminated sites in many countries. In Korea, there are also recognized needs to establish a reliable and cost-effective human health risk assessment strategy based on the TPH fractionation method. In order to satisfy the social and institutional demand, this study suggested that the comprehensive risk assessment strategy based on a newly modified TPH fractionation method with 10 fractions, the Korean Standard Test Method (KSTM)-based analytical protocol and a stepwise risk assessment framework should be introduced into the domestic contaminated land management system. Under the proposed strategy, POL-contaminated sites can be effectively managed in terms of human health protection, and remedial cost and time can be determined reasonably. In addition, more researches required to increase our understanding of environmental risks and improve the domestic management system were proposed.

An Examination of Variation in Risk Assessment Practices in Relation to Assessors' Goals: American and International Practices

  • Park, Lorenz R. mberg
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.219-225
    • /
    • 2001
  • The basic structure for assessment of potential health risks from environmental chemicals is widely agreed upon, but many of the details of risk assessment procedures differ among practitioners. Government regulatory agencies typically have guidelines or standard procedures for their risk assessments, established to ensure consistency and comparability, to set standards for adequacy, and to embody underlying tenets. In setting and updating such guidelines, each agency takes into account not only the prevailing thinking about appropriate procedures, but also its own goals and responsibilities and the precedents it has set for itself in past analyses. This results in variations in methods, and consequently in characterization of risks, among regulatory assessments, even when they are based on the same data. As a result, adopting existing assessments from a variety of regulatory bodies needs to be done with caution. This paper examines some of the variants in risk assessment approaches among American federal regulatory agencies and relates them to the variations in regulatory responsibilities of those groups. Comparisons to international practices are also drawn. The impact on development of world-wide risk standards is discussed.

  • PDF

Ecological Risk Assessment of Lead and Arsenic by Environmental Media (납과 비소에 대한 환경매체별 생태위해성평가)

  • Lee, Byeongwoo;Lee, Byoungcheun;Kim, Pilje;Yoon, Hyojung
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • Objectives: This study intends to evaluate the ecological risk of lead (Pb), arsenic (As), and their compounds according to the 2010 action plan on inventory and management for national priority chemicals and provide calculations of risks to the environment. By doing so, we aim to inform risk management measures for the target chemicals. Methods: We conducted species sensitivity distribution (SSD) analysis using the collected ecotoxicity data and obtained predicted no effect concentrations (PNECs) for the in-water environment using a hazardous concentration of 5% (HC5) protective of most species (95%) in the environment. Based on the calculated PNECs for aquatic organisms, PNEC values for soil and sediment were calculated using the partition coefficient. We also calculated predicted exposure concentration (PEC) from nation-wide environmental monitoring data and then the hazard quotient (HQ) was calculated using PNEC for environmental media. Results: Ecological toxicity data was categorized into five groups and five species for Pb and four groups and four species for As. Based on the HC5 values from SSD analysis, the PNEC value for aquatic organisms was calculated as 0.40 ㎍/L for Pb and 0.13 ㎍/L for As. PNEC values for soil and sediment calculated using a partition coefficient were 77.36 and 350.50 mg/kg for Pb and 24.20 and 112.75 mg/kg for As. The analysis of national environmental monitoring data showed that PEC values in water were 0.284 ㎍/L for Pb and 0.024 ㎍/L for As, while those in soil and sediment were respectively 45.9 and 44 mg/kg for Pb, and 11.40 and 19.80 mg/kg for As. Conclusions: HQs of Pb and As were 0.70 and 0.18 in water, while those in soil and sediment were 0.59 and 0.13 for Pb and 0.47 and 0.18 for As. With HQs <1 of lead and arsenic in the environment, their ecological risk levels are found to be low.

Health Risk Assessment of Heavy Metals in PM2.5 in Industrial Areas (일부 공단지역 PM2.5에 부착된 중금속 노출에 의한 건강위해성평가)

  • Jeon, Jun-Min;Kang, Byungb-Wook;Lee, Hak-Sung;Lee, Cheol-Min
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.4
    • /
    • pp.294-305
    • /
    • 2010
  • This study estimated the health risk of heavy metals in particulate matter $(PM)_{2.5}$ in a Gwangyang industrial complex. The $PM_{2.5}$ containing heavy metal was collected from January to November, 2008 using a denuder air sampler and by IC (Ion Chromatograph). The risk assessment was performed in a four-step process; hazard identification, exposure assessment, dose-response assessment and risk characterization. In the hazard identification process, $Cr^{6+}$, Ni, As, and Pb were categorized as human carcinogens and probable human carcinogens, while Ti, Mn, Se, P, $Cr^{3+}$, Cu, and Zn were not classified as human carcinogens. It was found that the excess cancer risk by Central Tendency Exposure (CTE) of $Cr^{6+}$ and As in $PM_{2.5}$ was > $10^{-6}$, and the total excess cancer risk posed by carcinogen heavy metals in $PM_{2.5}$ was > $10^{-6}$. It was also determined that the total hazard index by CTE of non-carcinogen heavy metals in $PM_{2.5}$ was <1. Taken together, these results indicate a high cancer risk associated whit inhalation of heavy metal-containing$PM_{2.5}$ in industrial areas.

Formaldehyde Risk Assessment in Other Household Textile Products (가정용 섬유제품 중 기타 제품류의 폼알데하이드 위해성평가 연구)

  • Tae Hyun Park;Ji Hwan Song;Sa Ho Chun;Hee Rae Joe;Pil Jun Yoon;Ho Yeon Kang;Myeong Seon Ku;Jin Hyeok Son;Cheol Min Lee
    • Journal of Environmental Health Sciences
    • /
    • v.50 no.2
    • /
    • pp.138-145
    • /
    • 2024
  • Background: Appropriateness issues have emerged regarding the non-application of hazardous substance safety standards for items classified as 'other textile products'. Objectives: Testing for formaldehyde (HCHO) and risk assessment were conducted on 'other textiles products' to provide reference data for promoting product safety policies. Methods: Testing was conducted on five items (102 products) classified as 'other textile products' according to relevant standards (textile products safety standards), and the risk of each product was assessed using the evaluation methodologies of the European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) and European Chemical Agency (ECHA). Results: Out of the 102 products tested, HCHO was detected above the quantification limit in five. Based on these results, the screening risk assessment indicated that three products exceeded the criteria. Upon reassessing the emission and transfer rates of products exceeding the criteria, it was confirmed that there were no instances of exceeding the criteria. Conclusions: Risk assessment results can be used as supporting data for non-application of hazardous substance standards. However, it is deemed necessary to transition towards a management approach based on risks in order to addressing emerging trends such as convergence/new products.

An Introductory Research for Development of Soil Ecological Risk Assessment in Korea (토양생태 위해성평가 제도 국내 도입방안 연구)

  • An, Youn-Joo;Kim, Shin Woong;Moon, Jongmin;Jeong, Seung-Woo;Kim, Rog-Young;Yoon, Jeong-Ki;Kim, Tae-Seung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.6
    • /
    • pp.348-355
    • /
    • 2017
  • Human activities have resulted in soil pollution problems to us. Human and ecological risk assessment have been suggested as an efficient environmental management strategy for protecting human and ecosystems from soil pollution. However, Korean environmental policy is currently focused on human protection, and fundamental researches for ecology protection are required for institutional frameworks. In this study, we developed a schematic frame of Korean soil ecological risk assessment, and suggested the basic information for its application. This study suggested a soil ecological risk assessment scheme consisting of 4 steps for derivation of Predicted-No-Effect-Concentration (PNEC): 1) ecotoxicity data collection and reliability determination, 2) data standardization, 3) evaluation of data completeness for PNEC calculation, and 4) determination of ecological-risk. The reliability determination of ecotoxicity data was performed using Reliability Index (RI), and the classification of domestic species, acute/chronic, toxicity endpoint, and soil properties was used for data cataloging. The PNEC calculation methodology was determined as low-reliability, middle-reliability, and high-reliability according to their quantitative and qualitative levels of ecotoxicity data. This study would be the introductory plan research for establishment of Korean soil ecological risk assessment, and it can be a fundamental framework to further develop guidelines of Korean environmental regulation.

Risk Assessment for Farmers in the Vicinity of Abandoned Nokdong Mine in South Korea

  • Park, Jeong-Hun;Choi, Kyoung-Kyoon
    • Environmental Engineering Research
    • /
    • v.18 no.4
    • /
    • pp.221-227
    • /
    • 2013
  • A risk assessment of environmental media was performed for the inhabitants in the area of the abandoned Nokdong metal mine. Soil, groundwater, and crop samples were collected from September to October 2008 around the mine. After pretreatment of these samples, metal concentrations were measured, and a risk assessment was performed using the Korean soil-contamination risk assessment guidelines. Lead (Pb) and arsenic (As) intake rates were the highest for inhalation of soil dust. The cancer risks from ingestion of As-contaminated groundwater, inhalation of As-, Cd-, and Pb-contaminated soils, and contact of As-contaminated soils exceeded the acceptable risk. The sum of all carcinogenic risks was $9.29{\times}10^{-3}$. The non-carcinogenic risk was highest for ingestion of As-contaminated water (11.0), followed, in descending order, by inhalation of Hg-contaminated soil and ingestion of Pb-contaminated water. Most of the risks were associated with As, Cd, Pb, and Hg contamination, and therefore, these metals were considered to be potential toxic carcinogens and non-carcinogens for humans in this area. In this study, the non-carcinogenic risks of ingestion of contaminated water or crops, as well as those associated with the inhalation of soil dust were observed.

Development of Background Exposure Effect of Harmful Pollutants Using Population Risk Assessment in Ulsan (인구집단 위해도 평가 방법을 활용한 유해화학물질 배경 노출 영향 보정 방법 개발 -울산공단주변을 대상으로-)

  • Nam Goung, Sun Ju;Lee, Cheol Min;Lee, Hye Won;Park, Si Hyun;Lim, Hui Been;Choi, Kil Yong
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.3
    • /
    • pp.231-237
    • /
    • 2019
  • Objective: The objective of this study was to propose a method using population risk to assess the local background exposure effect of harmful pollutants from chemical accidents in Ulsan. Methods: The benzene was selected as representative harmful pollutant. The concentrations of benzene were measured and analyzed at 40 sites in Ulsan city in September, 2018. The data from National Statistics office in Korea were used for population density, and the Integrated Risk Information System (IRIS) data from US EPA were used for unit risk. Results: The risk assessment can be carried out by considering the background population risk. The background population risk was calculated as 5.01 persons per million for exposure to benzene in Ulsan, and therefore may be used as a adjusted background method in case of chemical accident caused by benzene. Conclusions: This study may provide the evidence that background exposure effect and risk to harmful pollutants from chemical accidents would be useful.