• 제목/요약/키워드: Environmental Radiation

검색결과 1,545건 처리시간 0.026초

The System of Radiation Dose Assessment and Dose Conversion Coefficients in the ICRP and FGR

  • Kim, Sora;Min, Byung-Il;Park, Kihyun;Yang, Byung-Mo;Suh, Kyung-Suk
    • Journal of Radiation Protection and Research
    • /
    • 제41권4호
    • /
    • pp.424-435
    • /
    • 2016
  • Background: The International Commission on Radiological Protection (ICRP) recommendations and the Federal Guidance Report (FGR) published by the U.S. Environmental Protection Agency (EPA) have been widely applied worldwide in the fields of radiation protection and dose assessment. The dose conversion coefficients of the ICRP and FGR are widely used for assessing exposure doses. However, before the coefficients are used, the user must thoroughly understand the derivation process of the coefficients to ensure that they are used appropriately in the evaluation. Materials and Methods: The ICRP provides recommendations to regulatory and advisory agencies, mainly in the form of guidance on the fundamental principles on which appropriate radiological protection can be based. The FGR provides federal and state agencies with technical information to assist their implementation of radiation protection programs for the U.S. population. The system of radiation dose assessment and dose conversion coefficients in the ICRP and FGR is reviewed in this study. Results and Discussion: A thorough understanding of their background is essential for the proper use of dose conversion coefficients. The FGR dose assessment system was strongly influenced by the ICRP and the U.S. National Council on Radiation Protection and Measurements (NCRP), and is hence consistent with those recommendations. Moreover, the ICRP and FGR both used the scientific data reported by Biological Effects of Ionizing Radiation (BEIR) and United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) as their primary source of information. The difference between the ICRP and FGR lies in the fact that the ICRP utilized information regarding a population of diverse races, whereas the FGR utilized data on the American population, as its goal was to provide guidelines for radiological protection in the US. Conclusion: The contents of this study are expected to be utilized as basic research material in the areas of radiation protection and dose assessment.

한국의 환경방사선준위(環境放射線準位)($1961{\sim}1980$) (Environmental Radiation Level in Korea($1961{\sim}1980$))

  • 노재식
    • Journal of Radiation Protection and Research
    • /
    • 제6권1호
    • /
    • pp.1-7
    • /
    • 1981
  • This report presents the results of the environmental radiation program at Korea Advanced Energy Research Institute (KAERI) ($37^{\circ}38'N,\;127^{\circ}05'E$) and its surroundings for the last two decades (January, 1961 through December, 1980). In the 1960s, the monthly mean levels of environmental external radiation encountered ranged from a low of 14.2 microroentgen per hour to a high of 42.2 microroentgen per hour with a mean of 21.7 microroentgen per hour, while in 1970s it ranged from a low of 12.4 microroentgen per hour to a high of 40.8 microroentgen per hour with a mean of 20.4 microroentgen per hour. It may, therefore, be said that environmental radiation dose rates remained almost unchanged for the two decades except for the second half of 1960s and the first half of 1970s during which the off-site and on-site patterns were frequently unlike in form and intensity with appreciable differences between average values. Particular results of interest with respect to the effects of the fallout gamma dose rate on environmental radiation show that elevated levels were encountered in association with the deposits of fresh debris from Chinese and Russian nuclear weapons tests in particular.

  • PDF

장파복사 모형의 매개변수 추정 (Parameters Estimation in Longwave Radiation Formula)

  • 조홍연;이길하;이정미
    • 환경영향평가
    • /
    • 제21권2호
    • /
    • pp.239-246
    • /
    • 2012
  • Daily net radiation is essential for heat budget analysis for environmental impact assessment in the coastal zone and longwave radiation is an important element of net radiation because there is a significant exchange of radiant energy between the earth's surface and the atmosphere in the form of radiation at longer wavelengths. However, radiation data is not commonly available, and there has been no direct measurement for most areas where coastal environmental impact assessment is usually most needed. Often an empirical equation, e.g., Penman and FAO-24 formulae is used to estimate longwave radiation using temperature, humidity, and sunshine hour data but local calibration may be needed. In this study, local recalibration was performed to have best fit from a widely used longwave equation using the measured longwave radiation data in Korea Global Atmospheric Watch Center (KGAWC). The results shows recalibration can provided better performance AE=0.23($W/m^2$) and RMSE=14.73($W/m^2$). This study will contribute to improve the accuracy of the heat budget analysis in the coastal area.

Effect of UV -B radiation on seedlings of two Solidago virgaurea populations from the Mt. Hakusan area of Japan

  • Nakajima, Nobuyoshi;Takahashi, Shinya;Tamaoki, Masanori;Kubo, Akihiro;Aono, Mitsuko;Saji, Hikaru
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.400-402
    • /
    • 2002
  • We collected seeds of Solidago virgaurea plants growing at different altitudes on the Mt Hakusan area in Japan and cultivated them in a naturally-lit green house. Three-week-old seedlings were irradiated with supplemental UV-B for 12 h each day for 1 and 2 weeks. After a week of itradiation the seedlings of the population collected from the higher altitude at Oh-nanjiho (ON) had accumulated more anthocyanins than those from the lower altitude at Bettoh-deai (BD). Levels of anthocyanins in the ON seedlings were highly correlated with the dose of UV-B radiation and the correlation was also observed after 2 weeks. The growth of the third leaves was retarded by UV-B radiation in both populations. The extent of growth retardation in the third leaves was correlated with the dose of UV -B radiation in both populations. However, no significant difference in the extent of leaf area growth was observed between the ON and BD populations. The increase in plant fresh weight was extensively inhibited in the ON seedlings after 1 week of UV-B radiation. The inhibition was recovered to those in the BD population by 2 weeks irradiation. These results indicate that these populations respond differentially to supplementary UV -B radiation during the first week. Because flavonoids such as anthocyanins play an important role in protection against UV-B radiation in many plants, populations growing at higher altitude may be better able to adapt to increased global levels of UV-B radiation.

  • PDF

남극 세종기지에서의 구름 산란에 의한 자외선 변화 (The Variation of UV Radiation by Cloud Scattering at King Sejong Station in West Antarctica)

  • 이규태;이방용;원영인;김윤정;이원학;지준범
    • Ocean and Polar Research
    • /
    • 제26권2호
    • /
    • pp.133-143
    • /
    • 2004
  • For the purpose of understanding the cloud scattering effect of UV radiation at King Sejong station In West Antarctica, we analyzed the data measured by UV-Biometer at surface and compared its result with solar radiation model. The parameterization of UV radiation by cloud ice crystal was applied to solar radiation model and the sensitivity of this model for the variation of ice crystal was tested. The cloud optical thickness was calculated by using this solar radiation model. It was compared the result from calculation with CERES satellite data. In solar radiation model, the UV radiation was less scattered with increase of ice crystal size in cloud and this scattering effect was more important to UV-A radiation than Erythemal UV-B radiation. But scattering effects by altitude of cloud was not serious. The calculated cloud optical thicknesses in Erythemal UV-B and UV-A region were compared with CERES satellite data and the result by UV-A was more accurate than Erythemal UV-B region.

Mathematical Description and Prognosis of Cell Recovery after Thermoradiation Action

  • Komarova, Ludmila N.;Kim, Jin-Kyu;Petin, Vladislav G.
    • 환경생물
    • /
    • 제26권1호
    • /
    • pp.1-7
    • /
    • 2008
  • A mathematical model for the synergistic interaction of physical and chemical environmental agents was suggested for quantitative prediction of irreversibly damaged cells after combined exposures. The model took into account the synergistic interaction of agents and was based on the supposition that additional effective damages responsible for the synergy are irreversible and originated from an interaction of ineffective sublesions. The experimental results regarding the irreversible component of radiation damage of diploid yeast cells simultaneous exposed to heat with ionizing radiation ($^{60}Co$) or UV light (254 nm) are presented. It was shown that the cell ability of the liquid holding recovery decreased with an increase in the temperature, at which the exposure was occurred. A good correspondence between experimental results and model prediction was demonstrated. The importance of the results obtained for the interpretation of the mechanism of synergistic interaction of various environmental factors is discussed.