• Title/Summary/Keyword: Environmental Elements

Search Result 2,850, Processing Time 0.04 seconds

The Distribution of Potentially Toxic Elements in Soils Derived from PFA near Youngwol Power Plant (영월지역 토양중 PFA로부터 기인된 잠재적 독성원소의 분포)

  • Choi, Sun Kyung;Moon, Hi-Soo;Song, Yoongoo;Yoo, Janghan
    • Economic and Environmental Geology
    • /
    • v.31 no.6
    • /
    • pp.509-518
    • /
    • 1998
  • Fly ashes have been deposited around Youngwol power plant until electrostatic precipitator was installed in 1981. Fresh fly ash samples from electrostatic precipitator and weathered fly ash from ash disposal site were collected from Youngwol power plant, along with 65 soil samples of nearby area to look into the influence of PFA deposit on the soils in surrounding area. In chemistry, EPA does not contain high level of toxic elements and there is no notable concentration of toxic elements in soil near power plant. Total concentrations of Co, Cr, Cu, V, and Zn are 13 ppm, 89 ppm, 73 ppm, 157 ppm and 57 ppm in PFA. Concentrations of theses elements in ash-rich soils are 15 ppm, 78 ppm, 60 ppm, 133 ppm and 68 ppm, and those in ash-poor soils are 19 ppm, 70 ppm, 38 ppm, 91 ppm and 97 ppm. But these metal elements are highly concentrated in magnetic fractions of EPA (Co, 129 ppm; Cr, 217 ppm; Cu, 210 ppm; V, 197 ppm; Zn 90 ppm). Considering the process of long-term weathering of PFA, potentially toxic substances from the ash could be leached into soils and groundwater.

  • PDF

Comparison of USEPA Digestion Methods for Trace Metal Analysis Using SRM

  • Shin, Mi-Young;Yoon, Hyeon;Kim, Youn-Tae;Yoon, Cheol-Ho;Woo, Nam-Chil
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.223-226
    • /
    • 2004
  • The importance of a proper sample preparation and analysis technique has getting attention due to the complicity of toxic elements of interest from environmental samples depend on analytical purposes. It is critical to use proper analytical method to evaluate trace elements concentration in many environmental samples especially for making remediation decisions. Therefore, it is critical to apply a proper sampling and analytical method such as EPA publication SW-846 (Test Methods for Evaluating Solid Waste, Physical/chemical Methods). The objective of this study was to compare the USEPA Methods 3050B, modified 3050B, 305 la, and KBSI method (modified EPA 3052 Method) in term of recovery rate of metals. The NIST SRM (Montana soil) was used to compare the extraction and digestion efficiency. After sample has been collected the analysis were achieved by ICP-MS (Elan 6100, Perkin Elmer) as well as ICP-AES (Ultima 2C, JY) for trace elements and major elements.

  • PDF

Preliminary Study on the Elemental Quantification of in Ambient Liquid Samples of Microliter Volume Using the In-air Micro-PIXE Technique

  • Ma, Chang-Jin;Lim, Cheol-Soo;Sakai, Takuro
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.1
    • /
    • pp.54-60
    • /
    • 2017
  • Quantifying the trace elements in infinitesimal ambient liquid samples (e.g., single raindrop, cloud/fog water, and the soluble fraction extracted from the particles collected for a short time) is an important task for understanding formation processes, heating/cooling rates, and their health hazards. The purpose of this study is to employ an in-air micro PIXE system for quantitative analysis of the trace elements in a thimbleful of reference liquid sample. The bag type liquid sample holder originally designed with $10{\mu}m$ thick $Mylar^{(R)}$ film retained the original shape without any film perforation and apparent peaks of film blank by the end of the analysis. As one of tasks to be solved, the homogeneity of the elemental distribution in liquid reference species was verified by the X-ray line profiles for several references. It was possible to resolve the significant peaks for whole target elements corresponding to the channel number of micro-PIXE spectrum. The calibration curves for the six target elements (Si, S, Cl, Fe, Ni, and Zn) in standard solutions were successfully plotted by concentration (ppm) and ROI of interest net counts/dose (nC).

FINITE ELEMENT METHOD - AN EFFECTIVE TOOL FOR ANALYSIS OF SHELL

  • Park, Chang-Koon;Lee, Tae-Yeol
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.3-17
    • /
    • 2003
  • This paper deals with the problems and their possible solutions in the development of finite element for analysis of shell. Based on these solution schemes, a series of flat shell elements are established which show no signs of membrane locking and other defects even though the coarse meshes are used. In the element formulation, non-conforming displacement modes are extensively used for improvement of element behaviors. A number of numerical tests are performed to prove the validity of the solutions to the problems involved in establishing a series of high performance flat shell elements. The test results reveal among others that the high accuracy and fast convergence characteristics of the elements are obtainable by the use of various non-conforming modes and that the ‘Direct Modification Method’ is a very useful tool for non-conforming elements to pass the patch tests. Furthermore, hierarchical and higher order non-conforming modes are proved to be very efficient not only to make an element insensitive to the mesh distortion but also to remove the membrane locking. Some numerical examples are solved to demonstrate the validity and applicability of the presented elements to practical engineering shell problems.

  • PDF

A Comparative Analysis of Content Elements Related to Environment Education in Elementary School Curriculum (초등학교 교육과정의 환경교육 관련 내용 요소 비교)

  • Park, Jae-Keun;Lee, Keuk-Hee
    • Journal of Science Education
    • /
    • v.35 no.2
    • /
    • pp.250-261
    • /
    • 2011
  • The purpose of this study is to analyze how the content elements of the environment education are displayed between related subjects in elementary school curriculum and find a desirable direction of the environment education. Major subjects that handle the components of the environment education include science, physical education, social studies, ethics, and practical arts. Among these subjects, science aims for the ecological perspective, social studies aims for rational decision making and practical behaviors, and ethics aims for the correct formation of environmental ethics and values. In the component ratio of the environment education, the domains of the natural environment, environmental ethics, environmental pollution, environmental protection and measure were higher. In the formation of content elements according to grades, the connectivity of the environment curriculum has been relatively well secured in the order of the learning about the environmental components, awareness on environmental problems and the measures and efforts to overcome environmental problems. Based on the findings above, the followings are proposed for future environment curriculum in elementary school. First, it is necessary to increase the ratio of the ecological perspective based on science and coordinate the period to suggest this contents. Second, it is necessary to complement the contents of social studies regarding green growth and sustainable development which have become global issues in the environment education. Third, Pan-curriculum and integrated discussions to prepare multi-academic and interdisciplinary environment curriculum have to be preceded and through this process it is necessary to set the target of environment education and select the content elements of the curriculum.

  • PDF

Contamination and Mobility of Toxic Trace Elements in Tailings of Samsanjeil Mine (삼산제일광산 광미 내 유해 미량원소의 오염 및 이동도)

  • Yeon Kyu-Hun;Lee Pyeong-Koo;Youm Seung-Jun;Choi Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.38 no.4 s.173
    • /
    • pp.451-462
    • /
    • 2005
  • In order to examine the extent of environmental contamination at abandoned Samsanjeil Cu mines in Kosung-kun, Kyeongsangnam-do, we have investigated the contaminations and mobility of toxic trace elements from mine wastes including about 280,000 tonnages of tailings by chemical experiments (total extraction, partial extraction by 0.1N HCI and sequential extraction procedure). Total concentrations of trace elements showed that Cu, As, Co, Zn, Pb, and Cd concentrations in tailings were 14.0, 3.6, 3.1, 2.1, 2.1 and 1.6 times greater than those in background soil, respectively. From the proportion of metals bound to the exchangeable and carbonate fractions, the comparative mobility of metals decrease in order of $Zn(29.0\%)>Cu(12.3\%)Pb(9.6\%)>Cd(3.0\%)>As=Co(0.0\%)$. Based on the concentrations, chemical speciations of tailings, waste rock and nearby soil, it was revealed that Cu and Zn were the most possible elements to contaminate the surrounding environment in Samsanjeil mine area. In addition, the tailings had total trace metal concentrations below Dutch guideline values except Cu, and they might not affect adverse impact on environment.

Design Parameter Structure for Architectural Elements of External Kinetic Facade

  • Ji, Seok-Hwan;Lee, Byung-Yun
    • KIEAE Journal
    • /
    • v.16 no.3
    • /
    • pp.35-46
    • /
    • 2016
  • Purpose: This paper aims to analyse the composition system of architectural elements including shape, kinetic and material elements of kinetic facades and establish the design parameter system as a common conceptual and practical knowledge sharing platform with mechanical and electrical experts. Method: This research has been conducted in a three steps. At first, 120 cases of external shading devices are analyzed and their classification criteria have been established. Secondly geometric, kinetic and material elements are categorized in a common kinetic facade coordinates system considering environmental effects and operation method, and the applicability of combination of each element are tested. Lastly core design parameters for each element have been established in a common office building installation coordinate. Result: Geometry elements are categorized into seven geometric shapes and kinetic elements is categorized into basic linear and rotational motion and combinational folding and rolling motion. The combined set of parameters for three elements composes the whole design parameters for architectural elements of kinetic façade. Design parameters of shape elements are composed of shape, installation and arrangement parameters; design parameters for kinetic elements are composed of axis and range parameters; and design parameters of material elements are composed of thermal, lighting and color parameters.

A Study on the Characteristic of 'Landscape Architecture' in Environment-Friendly Architecture (친환경 건축에서 나타나는 랜드스케이프 건축 특성 연구)

  • Kim, Jung-Gon;Koh, Gwi-Han
    • Korean Institute of Interior Design Journal
    • /
    • v.22 no.3
    • /
    • pp.3-10
    • /
    • 2013
  • The purpose of this study is to analyze environmental-friendly design features in landscape architecture. The process of the study first started theoretical research of 'Environmental-friendly' and 'Landscape', then extracted primary conceptual elements that based on ecological background, and analyze 20 cases, from 1990 to now, based on elements that extracted. Summarizing about environment-friendly feature in landscape architecture of Form, Space, Energy Management is as following. First, In the formal aspect, Landscape architecture tend to harmonize with surrounding environment through horizontal, vertical continuity that is realized to transform artificial plate. Second, In the spatial aspect, Landscape architectural space has flexible feature. It is expression through methods blur boundary between outside and inside, lead to change and experience by time, indeterminacy of program. Third, In the energy management aspect, the introduction of effective energy system increase environmental features in space through technical application and environmental-friendly materials.

A Study on the Construction of GCM System (GCM 시스템 구축 방안에 관한 연구)

  • Lee, Doo-Yong;Lee, Chang-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.1
    • /
    • pp.201-206
    • /
    • 2014
  • GCM(Green Chain Management) is being spread by that companies which apply with eco-friendly concept in entire SCM(Supply Chain Management) perspective is being increased for resolving some recent environmental problems. There are reasons that numerous companies focus on GCM. At first various governments began to directly manage components and material contents about various noxious substances. Second, environment problem management in the entire logistics process from procurement of product materials to distribution of product became to be important according to introduction of certification system that evaluate the environmental impact throughout life-cycle of products. Purposes of this paper are 1) to analyze the GCM process whose important is more increasing in the recent logistics environment change, 2) to comprehend places and sources that generate environmental elements like energy consumption and greenhouse gas emissions in elements of logistics function, and 3) to construct integrated GCM system for observing activity of logistics function throughout life-cycle of products.