• Title/Summary/Keyword: Environmental Dredging

Search Result 177, Processing Time 0.019 seconds

Environmental Windows Setting Method for Environmental-Friendly River Dredging in Nakdong River Basin (낙동강 유역의 친환경 하천 준설을 위한 환경창 수립 방안)

  • Jeong, Anchul;Kim, Seongwon;Kim, Minseok;Jung, Kwansue
    • Journal of Environmental Policy
    • /
    • v.14 no.4
    • /
    • pp.45-61
    • /
    • 2015
  • The river environment in Korea has changed significantly after the completion of the Four Major Rivers Project due to the outdated river management methods and thus, it is necessary to modify the current river management process. A typical example of this management is dredging but it is a method that usually results in socio-environmental side effects. Therefore, in order to minimize the socio-environmental impacts of dredging, Korea is currently applying the Environmental Windows, a management practice currently being used in the United States that eliminates the risk of potentially harmful impacts of dredging. The use of statistical methods was suggested to address the issue of data insufficiency and this methodology was applied in the downstream part of the Gangjeong-Goryeong weir located within the Nakdong river basin. The results show that when performing a month of dredging, the optimal period is March whereas the optimal month to start dredging is August in case of an eight-month dredging project. If Korea's flood season is also considered for an eight-month dredging process, then October is the optimal month to start dredging. Non-structural methods such as the Environmental Windows reduce maintenance costs and also bring only short-term side effects to the environment, as opposed to structural methods such as the development of environmentally-friendly dredging machine. Given that few studies have explored this topic in Korea, the findings and suggestions could serve as basic data in studying river dredging in the future.

  • PDF

Development of Dredging Index for the Rational Remediation of Polluted Coastal Sediments (연안해역 오염퇴적물개선을 위한 준설판단지수(Dredging Index, DI) 개발)

  • Lee Chan-Won;Kwon Young-Tack;Yun Ji-Hoon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.2
    • /
    • pp.70-74
    • /
    • 2004
  • There is a need to have a dredging index for decision of contaminated sediments dredging. Some differences from nation to nation were found in sediment quality guideline being applied by several nations because of economic level, environmental nature, and multiple uses. Therefore, it is not reasonable to adapt one guideline to be applied to sediments dredging. In this study, we developed dredging index by combining four numerical sets of sediment quality judgement into a quadrodiagram for prudential decisions. This newly developed dredging index was applied to the data obtained from Masan Bay before and after the dredging process. The quadrodiagrams of DI give us a nice graphical comparison and numerical values to explain the relative dredging effect under the circumstances of continuous input loadings. When the guideline value of DI is determined for the judgement of dredging considering social and economic impacts on local community, the DI value will be a scientific and reasonable tool in deciding dredging area and dredging depth.

  • PDF

Magnetic force assisted settling of fine particles from turbid water

  • Hong, H.P.;Kwon, H.W.;Kim, J.J.;Ha, D.W.;Kim, Young-Hun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.2
    • /
    • pp.7-11
    • /
    • 2020
  • When rivers and lakes are contaminated with numerous contaminants, usually the contaminants are finally deposited on the sediments of the waterbody. Many clean up technologies have been developed for the contaminated sediments. Among several technologies dredging is one of the best methods because dredging removes all the contaminated sediments from the water and the contaminated sediments can be completely treated with physical and chemical methods. However the most worried phenomenon is suspension of fine particles during the dredging process. The suspended particle can release contaminants into water and resulted in spread of the contaminants and the increase of risk due to the resuspension of the precipitated contaminants such as heavy metals and toxic organic compounds. Therefore the success of the dredging process depends on the prevention of resuspension of fine particles. Advanced dredging processes employ pumping the sediment with water onto a ship and release the turbid water pumped with sediment into waterbody after collection of sediment solids. Before release of the turbid water into lake or river, just a few minutes allowed to precipitate the suspended particle due to the limited area on a dredging ship. However the fine particle cannot be removed by the gravitational settling over a few minutes. Environmental technology such as coagulation and precipitation could be applied for the settling of fine particles. However, the process needs coagulants and big settling tanks. For the quick settling of the fine particles suspended during dredging process magnetic separation has been tested in current study. Magnetic force increased the settling velocity and the increased settling process can reduce the volume of settling tank usually located in a ship for dredging. The magnetic assisted settling also decreased the heavy metal release through the turbid water by precipitating highly contaminated particles with magnetic force.

Characteristics of Hazardous Factors Regarding Chemical(Liquid Lime) Storage Tank Dredging Workers (약품(액상소석회) 저장조 준설 작업자의 유해인자 특성 평가 사례)

  • Je-Hun Kim;Ki-Youn Kim
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • Objectives: The study was performed to investigate characteristics of hazardous factors regarding chemical(liquid lime) tank dredging workers by case survey. Methods: Field data such as working condition, MSDS and respirators applied to chemical tank dredging work were analyzed and the work environmental factors of noise and indoor air quality were measured to compare existing data with actual work situations. Results: No health hazards to workers due to working conditions were confirmed during dredging work inside the chemical storage tank. All air quality measurement data during dredging work satisfied the management standards, and there were no by-products. During dredging work, there was a significant change in noise depending on the type of work, but considering the noise reduction rate(NRR) of the earplugs worn by workers, there was no actual health hazard due to noise exposure. Conclusions: A fit test for respirator and the expiration date of the safety helmet should be observed to ensure an appropriate level of safety and health for dredging workers in the chemical storage tank.

Diagnosis for Status of Dredging and Ocean Disposal of Coastal Sediment in Korea (우리나라 연안준설 및 준설토 해양투기 현황 진단)

  • Eom, Ki-Hyuk;Lee, Dae-In;Park, Dal-Soo;Kim, Gui-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.3
    • /
    • pp.185-193
    • /
    • 2009
  • This study documented and diagnosed the status and problems of coastal dredging and offshore disposal of dredged sediments in South Korea to improve assessment procedures for marine environmental impacts and develop effective management systems. A total of $729({\times}10^6)m^3$ of coastal sediment was dredged in the harbors during the period of 2001-2008. Most of dredged sediment was disposed to the land dumping sites whereas ocean disposal accounted for less than 5%. Ocean disposal areas were especially concentrated to the exclusive economic zone (EEZ) in the southeast of Busan, which is not only an important fishing area for fishermen, but also considered to be spawning and nursery ground for some commercial fish species. To minimize negative impacts of dredging and ocean disposal of coastal sediment on marine ecosystem and potential strife among coastal users, we suggest 1) in development projects involving ocean disposal, it should be mandatory to propose careful reuse plans in the land, and 2) guidelines of environmental assessment and consequence management programs should be developed and implemented.

Analysis of Dredging Efficiency for Operation of Dredging Cutter Head (준설용 커터헤드 운영방식에 따른 준설효율 향상특성 분석)

  • Chae, Dongseok;Park, Jae-Hyeon;Kim, Young Do;Kim, Myunghak;Lee, Mansoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.5
    • /
    • pp.5-9
    • /
    • 2009
  • In this experiment, the cutter head was designed as the down-scaled shape from the cutter head of the Asan-3 of Hyundai Construction Company. The dredging simulation instrument was installed in the experiment water tank which has the dimension of $4.2m(L){\times}2.2m(W){\times}1.5m(H)$. The speed of all components were controlled manually through the hydraulic tool and motors to find the effective desilting condition. As the results, the experiment was conducted to find the optimate dredging cutter head operation rate. To compare the factors which effect on the dredging effectiveness, the dimensionless dredging volume ratio was introduced and it can be found the best effectiveness at 2.0 m/s suction speed, 8 cm dredging depth and 4~4.5 dimensionless dredging volume ratio. Therefore, in order to take the best effectiveness these 3 components factors should be adequately considered.

  • PDF

Modeling for Prediction of Water Quality According to Dredging Operation (퇴적물 준설에 따른 수환경 영향 예측 모의)

  • Ahn, Jae-Hwan;Kim, Mee-Kyung;Lee, Mi-Kyung;Hwang, Byung-Gi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.11
    • /
    • pp.1228-1237
    • /
    • 2005
  • In order to predict the long-term effects of pollutants in sediment on the water quality and the improvement of water quality according to dredging operation, models applied to decide the location and the propriety of dredging were developed. At first, the area was divided into several segments and the developed model was applied to simulate the behaviors of contaminants in an aquatic environment by using estimated parameters. And then through the sensitivity analysis between parameters, the optimum values were determined. The long-term modelling in the area A forecasted that PCBs concentration in the hot spot was decreased from $3.1\;{\mu}g/L$ to $2.4\;{\mu}g/L$ in 30 years. Contaminants in sediment as a source of water pollution did not reduce remarkably in the long run. Therefore it is difficult to expect the improvement of water qualities without the fundamental isolation of contaminants from sediment. It is considered that the selective dredging in the spot improves the water quality consequently.

Physicochemical Properties of Depth-based Soil on the Reclaimed Dredging Area (임해준설매립지 토양의 깊이별 이화학적 특성)

  • Nam, Woong;Kwak, Young-Se;Jeong, In-Ho;Lee, Deok-Beom;Lee, Sang-Suk
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.5
    • /
    • pp.60-71
    • /
    • 2008
  • Through analyzing the specific physicochemical alterations in depth-based soil at reclaimed dredging area, the baseline data were provided for developing the reclaimed dredging area as natural landscape planting sites and ecological-landscape sites based on the soil improvement technology. There was no physical disturbance for 15 to 20 years in Gwangyang Bay reclaimed dredging area after reclamation. Physicochemical examinations of the soil were performed based on the vertical depth. Results of physicochemical analysis such as pH, electric conductivity, total salt contents, silt, clay contents, available phosphorus, calcium, magnesium, sodium, chlorine, and sodium-adsorption ratio showed increasing patterns with the depth while total organic contents, total nitrogen, and sand showed decreasing patterns. Potassium as an exchangeable cation, showed similar distribution patterns between the shallow and deep soil. This result strongly implied that long-term exposure to natural rainfall in reclaimed dredging area altered soil characteristics related to salinity. This research demonstrated that there were no remarkable differences in physicochemical characteristics at soil depth and groundwater table height, suggesting a baseline data for developing reclaimed dredging area. Additional investigation is required for different reclaimed dredging areas. Also, additional monitoring and examination are need on plant communities and time variable alteration in the soil to test the feasibility of reclaimed dredging areas as natural landscape planting sites and ecological-landscape sites.

Improvement of the Marine Environmental Assessment for Dredging and Ocean Disposal of Coastal Sediment in Korea (연안준설 및 준설토 해양투기 해양환경평가 개선방안)

  • Lee, Dae-In;Park, Dal-Soo;Eom, Ki-Hyuk;Kim, Gui-Young;Cho, Hyeon-Seo;Kim, Jong-Kyu;Seo, Young-Kyo;Baeck, Gun-Wook
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.3
    • /
    • pp.131-141
    • /
    • 2009
  • We studied improvement in marine environmental impact assessment and related management systems of coastal sediments that are dredged inshore but disposed offshore. After reviewing and diagnosing the existing assessment procedures and problems, we recommend to design the core assessment items and improve the reliability of assessment byenhancing the quality assurance/quality control (QA/QC) and verification processes. We proposed eco-friendly disposal plan for dredging sediment such as reuse system in land development was explored. A marine environmental database system was established to support the assessment processes. Guidelines for marine research and modelling were proposed for improving assessment of dredging and disposal of coastal sediment. Also, applying of screening and scoping for marine environmental assessment was reviewed.