• Title/Summary/Keyword: Environmental Accounting

Search Result 404, Processing Time 0.027 seconds

Deforestation and Forest land Use in Côte d'Ivoire: Policy and Fiscal Instruments

  • Djezou, Wadjamsse Beaudelaire
    • Journal of Forest and Environmental Science
    • /
    • v.32 no.1
    • /
    • pp.55-67
    • /
    • 2016
  • This paper investigated policies that drive the sustainable management of Ivorian forest which disappear at an annual rate of 250000 hectares. Based on an inter-temporal model for optimum allocation of forest land to three competing uses, the article found that sustainability depends on the incentive structure, of which forest taxes and fees are a key, though obviously not the sole, component. The study proposed to increase the area fee level by accounting for environmental externalities generated by forest harvesters and farmers. The paper showed that the area fee is a decreasing function of the forest natural rate of regeneration and the reconversion rate of agricultural surfaces. Finally, at the given forest natural rate of regeneration and the reconversion rate of agricultural surfaces, the model argued that the area fee need to be progressive (arithmetic progression) in the context of ecological equilibrium break while it should remain constant in normal situation.

Finite element modeling of slab-on-beam concrete bridge superstructures

  • Patrick, Michael D.;Huo, X. Sharon
    • Computers and Concrete
    • /
    • v.1 no.3
    • /
    • pp.355-369
    • /
    • 2004
  • This paper presents a study of four finite element techniques that can be used to model slabon-beam highway bridges. The feasibility and correctness of each modeling technique are examined by applying them to a prestressed concrete I-beam bridge and a prestressed concrete box-beam bridge. Other issues related to bridge modeling such as torsional constant, support conditions, and quality control check are studied in detail and discussed in the paper. It is found that, under truck loading, the bending stress distribution in a beam section depends on the modeling technique being utilized. It is observed that the behavior of the bridge superstructure can be better represented when accounting for composite behavior between the supporting beams and slab.

Introduction to the Dutch Goat Industry and a Cheese Making Farm (네덜란드 유산양 산업과 치즈생산 목장 Stroese Dame)

  • Ham, Jun-Sang
    • Journal of Dairy Science and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.69-73
    • /
    • 2015
  • The world is presently facing key challenges due to the population explosion, shortages in renewable sources of energy, and environmental problems. One important aspect of ecological intensification is the use and improvement of marginal lands and spaces often ignored, until now. Goats are known to be well adapted to scrubs, forage trees, and rangelands. Goats could contribute marginally, but significantly, to the growing demand for meat without using arable lands. Since 2000, there were 752 million goats globally, and goat livestock increased by 26.8% in 2010, accounting for 954 million heads. Goats are widespread due to their high adaptability to different environmental conditions and nutritional regimes, high productivity, and low maintenance cost. A significant growth in goat number was noticed in the period 2000~2010 in the Netherlands (+113.83%), in spite of the 9.75% decrease in EU-27. A cheese making goat farm in the Netherlands showed how it can survive in the one fifth size of the average. It may be a good model for the Korean goat industry since it uses seasonal breeding and results in reduced "goaty" flavor in the cheese.

  • PDF

Along-wind simplified analysis of wind turbines through a coupled blade-tower model

  • Spagnoli, Andrea;Montanari, Lorenzo
    • Wind and Structures
    • /
    • v.17 no.6
    • /
    • pp.589-608
    • /
    • 2013
  • A model is proposed to analyse the along-wind dynamic response of upwind turbines with horizontal axis under service wind conditions. The model takes into account the dynamic coupling effect between rotor blades and supporting tower. The wind speed field is decomposed into a mean component, accounting for the well-known wind shear effect, and a fluctuating component, treated through a spectral approach. Accordingly, the so-called rotationally sampled spectra are introduced for the blades to account for the effect of their rotating motion. Wind forces acting on the rotor blades are calculated according to the blade element momentum model. The tower shadow effect is also included in the present model. Two examples of a large and medium size wind turbines are modelled, and their dynamic response is analysed and compared with the results of a conventional static analysis.

A New Form of Nondestructive Strength-Estimating Statistical Models Accounting for Uncertainty of Model and Aging Effect of Concrete

  • Hong, Kee-Jeung;Kim, Jee-Sang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.3
    • /
    • pp.230-234
    • /
    • 2009
  • As concrete ages, the surrounding environment is expected to have growing influences on the concrete. As all the impacts of the environment cannot be considered in the strength-estimating model of a nondestructive concrete test, the increase in concrete age leads to growing uncertainty in the strength-estimating model. Therefore, the variation of the model error increases. It is necessary to include those impacts in the probability model of concrete strength attained from the nondestructive tests so as to build a more accurate reliability model for structural performance evaluation. This paper reviews and categorizes the existing strength-estimating statistical models of nondestructive concrete test, and suggests a new form of the strength-estimating statistical models to properly reflect the model uncertainty due to aging of the concrete. This new form of the statistical models will lay foundation for more accurate structural performance evaluation.

Seismic response control of buildings with force saturation constraints

  • Ubertini, Filippo;Materazzi, A. Luigi
    • Smart Structures and Systems
    • /
    • v.12 no.2
    • /
    • pp.157-179
    • /
    • 2013
  • We present an approach, based on the state dependent Riccati equation, for designing non-collocated seismic response control strategies for buildings accounting for physical constraints, with particular attention to force saturation. We consider both cases of active control using general actuators and semi-active control using magnetorheological dampers. The formulation includes multi control devices, acceleration feedback and time delay compensation. In the active case, the proposed approach is a generalization of the classic linear quadratic regulator, while, in the semi-active case, it represents a novel generalization of the well-established modified clipped optimal approach. As discussed in the paper, the main advantage of the proposed approach with respect to existing strategies is that it allows to naturally handle a broad class of non-linearities as well as different types of control constraints, not limited to force saturation but also including, for instance, displacement limitations. Numerical results on a typical building benchmark problem demonstrate that these additional features are achieved with essentially the same control effectiveness of existing saturation control strategies.

Ultimate load capacity of unit Strarch frames using an explicit numerical method

  • Lee, Kyoungsoo;Hong, Jung-Wuk;Han, Sang-Eul
    • Steel and Composite Structures
    • /
    • v.13 no.6
    • /
    • pp.539-560
    • /
    • 2012
  • This study uses an explicit numerical algorithm to evaluate the ultimate load capacity analysis of a unit Strarch frame, accounting for the initial imperfection effects of the stress-erection process. Displacement-based filament beam element and an explicit dynamic relaxation method with kinetic damping are used to achieve the analysis. The section is composed of the finite number of filaments that can be conveniently modeled by various material models. Ramberg-Osgood and bilinear kinematic elastic plastic material models are formulated to analyze the nonlinear material behaviors of filaments. The numerical results obtained in the present study are compared with the results of experiment for stress-erection and buckling of unit Strarch frames.

Review of Material Flow Analysis Related Activities of Developed Countries for the Improvement of Resources Efficiency and Sustainability (자원 효율성 및 지속 가능성 증진을 위한 선진국 물질흐름분석 관련활동에 대한 평가)

  • Kim, Seong-Yong
    • Economic and Environmental Geology
    • /
    • v.39 no.5 s.180
    • /
    • pp.615-626
    • /
    • 2006
  • The natural resources and material life-cycle include all human activities related to resources and material extraction, transportation, processing, use, recovery and disposal. Sustainable material management (SMM) is an integrated set of policy approaches targeted on economic agents throughout the material life-cycles and designed to result in economically efficient and environmentally effective material use. The material flows of industrial mineral, ores and fossil fuels have also long been a focal area for environmental policies because of the high environmental pressures associated with extraction, processing, consumption, and final disposal of these materials. OECD work on material flow is to improve the quantitative and analytical knowledge bases about natural resource and material flows within and among countries, so as to better understand the importance of material resources in member countries' economies. In several EU Member States, material flow accounts are part of official statistics. Material flow analysis (MFA) is a valuation method which assesses the efficiency of use of materials using information from material flow accounting. Material flow analysis helps to identify waste of natural resources and other materials in the economy which would otherwise go unnoticed in conventional economic monitoring systems. Resource use and resource efficiency has emerged as a major issue for long-term sustainability and environmental policy.

Business Strategy, Corporate Governance and Sustainability Reporting: An Analysis of the Fit Contingency Approach

  • HERNAWATI, Erna
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.12
    • /
    • pp.761-771
    • /
    • 2020
  • This study discusses the role of Board Monitoring Effectiveness (BME) on managers' decisions regarding the business strategies that fit the external business environmental conditions by using a contingency analysis approach. Furthermore, this study will examine how fit strategies affect Sustainability Reporting (SR) of listed companies on the Indonesia Stock Exchange (IDX) from 2014 to 2017. This study uses Conditional Mixed Process (CMP) technique. This CMP method is claimed to be more efficient in analyzing the TSL models. This study found that in highly uncertain conditions, BME had a positive influence on the probability of managers to choose prospector and defender strategies rather than analyzers. These results indicate that BME shows positive impact on the contingency fit between business strategies and environmental uncertainty. In addition, the study documents that only prospectors have a positive impact on SR, however this study failed to document that defenders have positive impact on SR. Meanwhile the unexpected result is analyzers have a significantly positive effect on SR. This study is the first study to investigate the role of BME in contingency fit between business strategies and environmental uncertainties and how it produces effects up to the level of SR.

Emergy Evaluation of Korean Agriculture (한국 농업의 에머지 평가)

  • Kang, Daeseok
    • Journal of Environmental Science International
    • /
    • v.26 no.9
    • /
    • pp.1087-1099
    • /
    • 2017
  • Emergy methodology was used to analyze the biophysical basis of Korean agriculture and assess its sustainablility. Total yearly emergy input into Korean agriculture was $7.72{\times}10^{22}sej/yr$ in 2013. Purchased inputs were the dominant emergy source, accounting for 90.1% ($6.95{\times}10^{22}sej/yr$) of the annual input. This clearly indicates that the Korean agriculture is a modern, industrialized system that depends mostly on market goods and services derived from nonrenewable resources. The monetary equivalent of the total emergy input was 18.9 trillion \/yr, 1.5 times greater than the total production cost from farm expense surveys. Emergy return on investment of Korean agriculture was low, with an emergy yield ratio of 1.11. Korean agriculture appears to exert pressure on the environment as revealed by the high environmental loading ratio of 9.30. With very low emergy input from renewable sources (9.7%) and high environmental pressure, Korean agriculture is not sustainable, with an emergy sustainability index of 0.12. This study suggests that higher use efficiency of and lower dependence on nonrenewable purchased inputs need to be prioritized in an effort to enhance the sustainability of Korean agriculture.