• 제목/요약/키워드: Environment parameter

검색결과 1,322건 처리시간 0.031초

SVM 커널함수의 파라미터 값에 따른 능동소나 표적신호의 식별 성능 분석 (Analysis of target classification performances of active sonar returns depending on parameter values of SVM kernel functions)

  • 박정현;황찬식;배건성
    • 한국정보통신학회논문지
    • /
    • 제17권5호
    • /
    • pp.1083-1088
    • /
    • 2013
  • 수중 천해 환경에서 능동소나의 반향 신호로 기뢰를 탐지 및 식별하는 일은 복잡한 해양 환경의 영향으로 어려운 문제이다. SVM은 패턴인식 문제에서 최적의 해를 제공하는 이진 분류기이다. 본 논문에서는 SVM을 이용하여 능동소나의 반향 데이터로 기뢰와 같은 금속 물체와 바위를 식별하는 실험을 수행하면서, SVM에 사용되는 커널함수의 파라미터 값의 변화에 따른 식별 성능을 분석하고 제시하였다.

수치적 접근을 통한 CID필터 형상이 내력에 미치는 영향 분석 연구 (Analysis of Parameters Affecting on Durability of CID Filter using Numerical Method)

  • 부이히엔빈;김상목;구태완;김정;강범수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.391-394
    • /
    • 2008
  • Durability of product is an important technical parameter of a current interception device (CID) filter. This parameter is influenced by several factors, such as: environment condition, external force, shape of device, heat and so on. In this study, the effect of the geometry of the device on durability was carried out. The effect of shape on durability of device is presented by force-carrying capacity that a device can sustain a maximum external force. Studied parameters of the CID filter's geometry include clearance, thickness, and corner radius. Fracture criterion of Cockcroft and Latham was also used to predict the maximum force-carrying capacity of device.

  • PDF

Numerical modeling and simulation technique in time-domain for multibeam echo sounder

  • Jung, Donghwan;Kim, Jeasoo;Byun, Gihoon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권2호
    • /
    • pp.225-234
    • /
    • 2018
  • A Multibeam Echo Sounder (MBES) is commonly used for rapid seafloor mapping. We herein present a time-domain integrated system simulation technique for MBES development. The Modeling and Simulation (M&S) modules consist of four parts: sensor array signal transmission, propagation and backscattering modeling in the ocean environment, beamforming of the received signals, and image processing. Also, the simulation employs a ray-theory-based algorithm to correct the reconstructed bathymetry, which has errors due to the refraction caused by the vertical sound velocity profile. The developed M&S technique enables design parameter verification and system parameter optimization for MBES. The framework of this technique can also be potentially used to characterize the seabed properties. Finally, typical seafloor images are presented and discussed.

Nonlocal strain gradient model for thermal stability of FG nanoplates integrated with piezoelectric layers

  • Karami, Behrouz;Shahsavari, Davood
    • Smart Structures and Systems
    • /
    • 제23권3호
    • /
    • pp.215-225
    • /
    • 2019
  • In the present paper, the nonlocal strain gradient refined model is used to study the thermal stability of sandwich nanoplates integrated with piezoelectric layers for the first time. The influence of Kerr elastic foundation is also studied. The present model incorporates two small-scale coefficients to examine the size-dependent thermal stability response. Elastic properties of nanoplate made of functionally graded materials (FGMs) are supposed to vary through the thickness direction and are estimated employing a modified power-law rule in which the porosity with even type of distribution is approximated. The governing differential equations of embedded sandwich piezoelectric porous nanoplates under hygrothermal loading are derived through Hamilton's principle where the Galerkin method is applied to solve the stability problem of the nanoplates with simply-supported edges. It is indicated that the thermal stability characteristics of the porous nanoplates are obviously influenced by the porosity volume fraction and material variation, nonlocal parameter, strain gradient parameter, geometry of the nanoplate, external voltage, temperature and humidity variations, and elastic foundation parameters.

Hygro-thermal wave propagation in functionally graded double-layered nanotubes systems

  • She, Gui-Lin;Ren, Yi-Ru;Yuan, Fuh-Gwo
    • Steel and Composite Structures
    • /
    • 제31권6호
    • /
    • pp.641-653
    • /
    • 2019
  • In this paper, wave propagation is studied and analyzed in double-layered nanotubes systems via the nonlocal strain gradient theory. To the author's knowledge, the present paper is the first to investigate the wave propagation characteristics of double-layered porous nanotubes systems. It is generally considered that the material properties of nanotubes are related to the porosity and hygro-thermal effects. The governing equations of the double-layered nanotubes systems are derived by using the Hamilton principle. The dispersion relations and displacement fields of wave propagation in the double nanotubes systems which experience three different types of motion are obtained and discussed. The results show that the phase velocities of the double nanotubes systems depend on porosity, humidity change, temperature change, material composition, non-local parameter, strain gradient parameter, interlayer spring, and wave number.

Augmented Reality Service Based on Object Pose Prediction Using PnP Algorithm

  • Kim, In-Seon;Jung, Tae-Won;Jung, Kye-Dong
    • International Journal of Advanced Culture Technology
    • /
    • 제9권4호
    • /
    • pp.295-301
    • /
    • 2021
  • Digital media technology is gradually developing with the development of convergence quaternary industrial technology and mobile devices. The combination of deep learning and augmented reality can provide more convenient and lively services through the interaction of 3D virtual images with the real world. We combine deep learning-based pose prediction with augmented reality technology. We predict the eight vertices of the bounding box of the object in the image. Using the predicted eight vertices(x,y), eight vertices(x,y,z) of 3D mesh, and the intrinsic parameter of the smartphone camera, we compute the external parameters of the camera through the PnP algorithm. We calculate the distance to the object and the degree of rotation of the object using the external parameter and apply to AR content. Our method provides services in a web environment, making it highly accessible to users and easy to maintain the system. As we provide augmented reality services using consumers' smartphone cameras, we can apply them to various business fields.

유비쿼터스 환경에서 개방형 제어 플랫폼에 기반한 무인탐사차량의 재형상 가능 위치제어 (Reconfigurable Position Control of Unmanned Expedition Vehicles under the Open Control Platform based Ubiquitous Environment)

  • 심덕선;양철관;안규섭;이준학
    • 제어로봇시스템학회논문지
    • /
    • 제11권12호
    • /
    • pp.1002-1010
    • /
    • 2005
  • We study on the implementation of reconfigurable position control system which is based on Open Control Platform(OCP) for Unmanned Expedition Vehicles(UEV) in ubiquitous environment. The control system uses hierarchical control structure and OCP structure which contains three layers such as core OCP, reconfigurable control API(Application Programmer Interface), generic hybrid control API. The goal of our research is to implement an UEV control system using advanced software technology. As a specific control problem, we study a transition management problem between PID control and neural network control depending on fault or parameter change of the plant, i.e., UEV. The concept of the OCP-based software-enabled control can provide synergy effect by the integration of software component, middleware, network communication, and control, and thus can be applied to various systems in ubiquitous environment.

Investigation of the seismic performance of precast segmental tall bridge columns

  • Bu, Z.Y.;Ding, Y.;Chen, J.;Li, Y.S.
    • Structural Engineering and Mechanics
    • /
    • 제43권3호
    • /
    • pp.287-309
    • /
    • 2012
  • Precast segmental bridge columns (PSBC) are alternatives for monolithic cast-in-situ concrete columns in bridge substructures, with fast construction speed and structural durability. The analytical tool for common use is demonstrated applicable for seismic performance prediction of PSBCs through experiment conducted earlier. Then the analytical program was used for parameter optimization of PSBC configurations under reversal cyclic loading. Shear strength by pushover analysis was compared with theoretical prediction. Moreover, seismic response of PSBC with energy dissipation (ED) bars was compared with its no ED bar counterpart under three history ground acceleration records. The investigation shows that appropriate ED bar and post-tensioned tendon arrangement is important for higher lateral bearing capacity and good ductility performance of PSBCs.

Important Radionuclides and Their Sensitivity for Ground water Pathway of a Hypothetical Near-Surface Disposal Facility

  • Park, J. W.;K. Chang;Kim, C. L.
    • Nuclear Engineering and Technology
    • /
    • 제33권2호
    • /
    • pp.156-165
    • /
    • 2001
  • A radiological safety assessment was performed for a hypothetical near-surface radioactive waste repository as a simple screening calculation to identify important nuclides and to provide insights on the data needs for a successful demonstration of compliance. Individual effective doses were calculated for a conservative ground water pathway scenario considering well drilling near the site boundary. Sensitivity of resulting ingestion dose to input parameter values was also analyzed using Monte Carlo sampling. Considering peak dose rate and assessment time scale, C-14 and T-129 were identified as important nuclides and U-235 and U-238 as potentially important nuclides. For C-14, the dose was most sensitive to Darcy velocity in aquifer The distribution coefficient showed high degree of sensitivity for I-129 release.

  • PDF

적응 퍼지 임피던스 제어기의 개발에 관한 연구 (A Study on Implementation of Adaptive Fuzzy Impedance Controller)

  • 임용택;장성민;김승우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2819-2821
    • /
    • 2000
  • We introduce Adaptive Fuzzy Impedance Controller for force control when robot contact with environment. Because robot and environment was always effected by nonlinear conditions. it needs to deal with parameter's uncertainty. As. it induced Fuzzy system in impedance controller. it used fuzzy inference logic that has robustness about uncertainty to tune impedance controller stiffness gain. We applied adaptive fuzzy impedance controller in One-Link Robot system and the method shows a good performance on desired position and force control with intensional contacting environment.

  • PDF