• 제목/요약/키워드: Environment industry

검색결과 6,545건 처리시간 0.034초

전자선을 이용한 아크릴산 그라프트 케냐프 섬유의 제조 및 이를 이용한 케냐프 섬유보강 시멘트의 투수특성 평가 (Preparation of Acrylic Acid-grafted Kenaf Fibers Using E-beam Irradiation and Evaluation of Permeability of Kenaf Fiber-cement Composites)

  • 김두영;전준표;김현빈;오승환;강필현
    • 방사선산업학회지
    • /
    • 제8권1호
    • /
    • pp.53-57
    • /
    • 2014
  • The kenaf is quickly developing as a renewable resource. Kenaf can be grown under a wide range of weather conditions. Modification of kenaf fiber by graft polymerization provides a significant route to alter the chemical properties, including surface hydrophilicity or hydrophobicity. In this study, kenaf fiber surfaces were grafted with acrylic acid as a hydrophilic group using electron beam irradiation. The grafting rate increased with an increase in grafting time. The FT-IR results confirmed that acrylic acid was successfully grafted onto the kenaf fibers. The wettability of the kenaf fiber was increased, accompanied by acylic acid grafting on the fiber surface. According to the permeability test result, it was found that acrylic acid grafted kenaf fiber reinforced cement composite was more reduced than non-grafted kenaf fiber reinforced cement composite.

전자선 조사에 따른 산화방지제 및 자외선안정제 첨가 HDPE의 변색 영향과 열적 특성 분석 (The Effect of Electron Beam Irradiation on Discoloration and Thermal Property of HDPE Filled with Antioxidants and UV Stabilizers)

  • 전준표;정승태;김현빈;오승환;강필현
    • 방사선산업학회지
    • /
    • 제7권1호
    • /
    • pp.23-28
    • /
    • 2013
  • In this study, we fabricated high density polyethylene (HDPE) composites filled with antioxidants and UV stabilizers. The electron beam irradiation on the fabricated composites was carried out over a range of absorbed doses from 50 to 200 kGy to confirm the changes of discoloration. The changes of discoloration were characterized using a color difference meter and FT-IR for confirming the changes of the color difference and structural change. It was observed that the color difference of IRGANOX 1010-, IRGAFOS 168-, and TINUVIN 328- added HDPE was higher than that of the control HDPE by electron beam irradiation. The melting temperature of UV stabilizer-added HDPE was not significantly changed by electron beam irradiation. However, the melting temperature of phenol-containing antioxidant-added HDPE was increased with increasing the absorbed dose. And the melting temperature of phosphorus-containing antioxidant-added composite was decreased with increasing the absorbed dose.

Degradation of p-nitrophenol by Gamma Irradiation

  • Lee, O Mi;Kim, Tae-Hun;Yu, Seungho;Jung, In-ha;Lee, Myunjoo
    • 방사선산업학회지
    • /
    • 제5권4호
    • /
    • pp.353-357
    • /
    • 2011
  • Degradation of p-nitrophenol has been carried out using only gamma irradiation or gamma irradiation with $H_2O_2$ or $Na_2S_2O_8$. Effects of different operating parameters such as initial concentration ($50mg\;l^{-1}$, $100mg\;l^{-1}$, $200mg\;l^{-1}$, $300mg\;l^{-1}$, $400mg\;l^{-1}$, $500mg\;l^{-1}$ and $600mg\;l^{-1}$) on the extent of degradation has been investigated. At 5 kGy, $50mg\;l^{-1}$ p-nitrophenol was completely degraded, and the radiolytic degradation of p-nitrophenol was described by the pseudo-first-order kinetic model. The combination of gamma irradiation with $H_2O_2$ or $Na_2S_2O_8$ leads to an enhanced effect, which remarkably increased the degradation efficiency of p-nitrophenol and TOC removal. However, at high $H_2O_2$ concentration, the efficacy of p-nitrophenol degradation is reduced because ${\cdot}OH$ radicals are scavenged by $H_2O_2$ and $Na_2S_2O_8$.

The Preparation of a Thermally Responsive Surface by Ion Beam-induced Graft Polymerization

  • Jung, Chang-Hee;Kim, Wan-Joong;Jung, Chan-Hee;Hwang, In-Tae;Choi, Jae-Hak
    • 방사선산업학회지
    • /
    • 제6권4호
    • /
    • pp.317-322
    • /
    • 2012
  • In this study, the preparation of a temperature-responsive poly(N-isopropylacrylamide) (PNIPAAm)-grafted surface was performed using an eco-friendly and biocompatible ion beam-induced surface graft polymerization. The surface of a perfluoroalkoxy (PFA) film was activated by ion implantation and N-isopropylacrylamide (NIPAAm) was then graft polymerized selectively onto the activated regions of the PFA surfaces. Based on the results of the peroxide concentration and grafting degree measurements, the amount of the peroxide groups formed on the implanted surface was dependant on the fluence, which affected the grafting degree. The results of the FT-IR-ATR, XPS, and SEM confirmed that the NIPAAm was successfully grafted onto the implanted PFA. Moreover, the contact angle measurement at different temperatures revealed that the surface of the PNIPAAm-grafted PFA film was temperature-responsive.

감마선 이용 친수성 PLLA 시트 기능화 및 특성 평가 (Functionalization of PLLA Sheet Using Gamma-ray Irradiation)

  • 권희정;정진오;정성린;박종석;임윤묵
    • 방사선산업학회지
    • /
    • 제12권4호
    • /
    • pp.343-348
    • /
    • 2018
  • Preliminary study was perfomed to develop a biocompatible filter material using radiation energy. Electrosppined PLLA nano sheets were surface-modificated with hydrophilic groups(acrylic group) by using radiation. The physico-chemical and morphological characteristics of modified PLLA sheets were measured by ATR, SEM, contact angle, and hydrophilic (acryl group) introduction rate (TBO). As a result, there was no morphological(fiber structure) structure change due to radiation, and it was confirmed that an acrylic group was successfully introduced onto PLLA fiber sheet by radiation.

이미다졸 기반 수화겔의 방사선 합성 및 특성 평가 (Characterization of Radiation Fabricated Imidazole Based Hydrogel)

  • 권희정;정진오;정성린;박종석;임윤묵
    • 방사선산업학회지
    • /
    • 제12권4호
    • /
    • pp.349-353
    • /
    • 2018
  • Metronidazole (MD), which is used as an antibiotic, is largely used as an oral and skin application agent, and has inhibiting effect on the production of the fungus causing malodor. However, the maximum drug inclusion concentration is 0.75% of skin ointment in commercially available. In this study, hydrogels containing high concentration of metronidazole were prepared by using radiation crosslinking technique based on biocompatible polymers, and release characteristics and antimicrobial properties were evaluated. This study was preliminary carried out to investigate whether it could be used effectively as antibacterial dressing materials.

전자선 조사를 이용한 히알루론산의 특성 조절 (Modulation of Hyaluronic Acid Properties by Electron Beam Irradiation)

  • 신영민;김우진;김용수;조선영;박종석;권희정;임윤묵;노영창
    • 방사선산업학회지
    • /
    • 제5권2호
    • /
    • pp.159-164
    • /
    • 2011
  • A variety of natural polymers have been used as tissue engineering scaffolds, drug delivery system, and cosmetic materials due to their higher biocompatibility and water uptake. As a major component of extracellular matrix, hyaluronic acid consisting of D-glucuronic acid and N-acetylglucosamine has been popularly used as a hydrogel material. Even though it has good properties to be used in the tissue engineering and cosmetic industry, its higher viscosity has limited a potential use in a variety of applications; only low content should be applied in preparing above products. In the present study, we investigated the effect of electron beam irradiation on the properties of hyaluronic acid. Hyaluronic acid paste containing low contents of water changed to solution after electron beam irradiation ranging from 1 to 10 kGy, which didn't exhibit any alteration of surface properties and morphological change after freeze-drying. However, its viscosity was significantly decreased as absorbed dose increased, which was approximately one by hundred in comparison with the viscosity of original hyaluronic acid solution with same concentration. In addition, it can still interact with positive charged chitosan generating polyelectrolyte complex. Therefore, only viscosity was decreased after electron beam irradiation, whereas other properties of hyaluronic acid maintained. Consequently, these hyaluronic acids with lower viscosities can be used in a variety of applications in tissue engineering, drug delivery, and cosmetic industry.

전자선 가교에 의한 HDPE/α-Al2O3 복합재료의 기계적 특성 평가 (Effects of Electron Beam Irradiation on Mechanical Properties of HDPE/α-Al2O3 Composites)

  • 정승태;신범식;김현빈;김태욱;전준표;강필현
    • 방사선산업학회지
    • /
    • 제5권2호
    • /
    • pp.131-135
    • /
    • 2011
  • In this study, we fabricated the HDPE and ${\alpha}-Al_2O_3$ composites with PE-g-MA as a function of the ${\alpha}-Al_2O_3$ nanopowder weight ratios. The electron beam irradiations on HDPE/${\alpha}-Al_2O_3$ composites were carried out over a range of absorbed doses from 20 to 200 kGy to make three-dimensional network structures. The mechanical properties were characterized using UTM for confirming the changes of the flexural strength and tensile strength. It was observed that the mechanical properties of HDPE were enhanced by the addition of ${\alpha}-Al_2O_3$. However, the strength of the 5 wt% ${\alpha}-Al_2O_3$ added composites decreased due to the nano-powder aggregation. The mechanical properties of composites were increased as increasing the electron beam irradiation up to 150 kGy. We believed that the electron beam irradiated HDPE/${\alpha}-Al_2O_3$ composites can be a good candidate for a variety of industrial applications.

감마선을 이용한 조직공학용 젤라틴이 개질된 미생물 셀룰로오스 지지체의 제작 및 특성 (Preparation and Characterization of Gelatin-immobilized Bacterial Cellulose Scaffold for Tissue Engineering Using Gamma-ray Irradiation)

  • 최종배;정성린;권희정;박종석;노영창;최영훈;박경진;박만용;신흥수;임윤묵
    • 방사선산업학회지
    • /
    • 제6권2호
    • /
    • pp.159-164
    • /
    • 2012
  • Bacterial cellulose (BC) is generated from citrus gel by Gluconacetobacter hansenii TL-2C. BC has good properties such as high-burst pressure, high-water contact and the ultrafine highly nanofibrous structure of mimic natural extracellular matrix (ECM) for tissue engineering. In this study, acrylic acid (AAc) was grafted onto BC surfaces under aqueous conditions using gamma-ray irradiation, and then immobilized gelatin onto AAc-g-BC. The characterization of scaffolds was performed by scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), toluidine blue O (TBO) assay. Morphology of gelatin and AAc incorporation onto BC nanofibers did not changed. Our study suggests that gelatin-immobilized BC nanofibers scaffold has a potentiality to fabricate 3D nanofibrous scaffolds for tissue engineering.