• 제목/요약/키워드: Environment impact

검색결과 5,296건 처리시간 0.032초

온라인 커뮤니티 특성과 충성도 간의 관계에 대한 연구: 자아일치성, 소비자 체험, 상호작용성의 매개적 역할을 중심으로 (A Study on the Relationship Between Online Community Characteristics and Loyalty : Focused on Mediating Roles of Self-Congruency, Consumer Experience, and Consumer to Consumer Interactivity)

  • 김문태;옥정원
    • 마케팅과학연구
    • /
    • 제18권4호
    • /
    • pp.157-194
    • /
    • 2008
  • 온라인 커뮤니티에 대한 연구는 학자들과 실무자들의 많은 관심을 받아온 분야이다. 과거 많은 연구자들이 온라인 커뮤니티를 통해 큰 상업적 성과를 거둘 수 있다고 했지만 현실은 그렇지 못하며, 마케팅 연구 분야에서도 상업적 성공을 이끄는 변수들에 대한 연구가 많이 이루어지지 못한 것이 사실이다. 이러한 점에서 본 연구는 온라인 커뮤니티 사이트들이 콘텐츠 관련 마케팅 노력을 통해 소비자들의 자아일치성을 높이고, 긍정적 체험을 유도하면서 커뮤니티 사이트 내에서 소비자 간 상호작용성 등을 높여 결국, 커뮤니티 사이트의 방문충성도 및 구매충성도를 실현시킬 수 있는 프레임 웍을 제시하였다. 연구결과 온라인 커뮤니티 사이트에서 소비자 간 상호작용성이 방문충성도 그리고 특히 구매충성도의 구축에 매우 중요한 요인으로 밝혀졌고, 온라인 커뮤니티 사이트에 대한 자아일치성 지각 및 긍정적인 소비자 체험 또한 소비자의 상호작용성, 방문충성도 그리고 커뮤니티에 대한 애정에 상당히 중요한 요인임을 알 수 있었다. 또한 이러한 매개변수에 주된 영향요소로서 콘텐츠 우수성, 사이트 생동감, 네비게이션용이성, 고객화 등의 콘텐츠 관련 마케팅 노력의 역할의 중요성을 강조하였다.

  • PDF

국내 주요 10대 기업에 대한 국민 감성 분석: 다범주 감성사전을 활용한 빅 데이터 접근법 (Public Sentiment Analysis of Korean Top-10 Companies: Big Data Approach Using Multi-categorical Sentiment Lexicon)

  • 김서인;김동성;김종우
    • 지능정보연구
    • /
    • 제22권3호
    • /
    • pp.45-69
    • /
    • 2016
  • 최근에 빅 데이터를 활용하여 감성을 측정하는 시도가 활발히 이루어지고 있다. 통신 매체와 SNS의 발달로 기업은 국민의 감성을 파악하고 즉시 대응해야할 필요성이 생겼다. 우리나라의 경제는 대기업에 대한 의존도가 높기 때문에 10대 기업에 대한 감성분석은 의미가 있다고 할 수 있다. 이러한 측면에서 본 연구는 다 범주를 기준으로 구축한 감성사전을 활용하여 우리나라 10대 기업에 대한 감성을 분석하였다. 빅 데이터를 이용하여 감성을 분석한 기존의 선행연구는 감성을 차원으로 분류하는 경향이 있다. 차원적 감성으로 감성을 분류하는 것은 분류의 기준이 학술적으로 증명되었기에 감성 분석에 주로 사용되어 왔지만 전문가 정도의 지식이 있어야 분류할 수 있어 보편적인 감성을 대변하는 데 비효과적이기에 보완이 필요하다고 할 수 있다. 개별 범주적 감성은 이 점을 보완할 수 있는 분류 방식으로 일정 수준의 주관성이 개입되지만 보편적으로 느낄 수 있는 감성을 측정하는데 효과적이다. 따라서 본 연구는 보편적인 감성의 측정을 위해 감성을 차원으로 분류하지 않고 개별 범주로 분류하여 9가지 영역으로 나누었다. 선행 연구에서 추출한 9가지 범주에 해당하는 감성 단어에 기초하여 감성사전을 구축하였으며 감성 단어가 검출된 빈도를 기준으로 감성을 분석했다. 대상 데이터는 2014년 1월부터 2016년 1월까지 우리나라 10대 기업에 대하여 축적된 뉴스 데이터이다. 대상 데이터에서 검출된 감성 단어의 빈도를 기준으로 각 기업에 대한 감성 순위를 나누고 분포를 확인하였다. 기업에 따라서 감성이 다를 수 있는지, 특정 사건이 각 기업에 대한 감성에 영향을 줄 수 있는지 가설을 세우고 검정하였다. 결론적으로, 다 범주 감성 사전을 활용한 감성 분석은 기업 간 비교와 시점 간 비교에 유의한 것으로 나타났다. 본 연구는 빅 데이터에 산재해있는 감성을 국민의 시각으로 측정하는 하나의 대안으로서 의의가 있다.

백운산(白雲山) 성숙활엽수림(成熟闊葉樹林) 개벌수확지(皆伐收穫地)에서 벌출직후(伐出直後)의 환경변화(環境變化) (Environmental Changes after Timber Harvesting in (Mt.) Paekunsan)

  • 박재현
    • 한국산림과학회지
    • /
    • 제84권4호
    • /
    • pp.465-478
    • /
    • 1995
  • 이 연구(硏究)는 성숙활엽수림(成熟闊葉樹林) 개벌수확지(皆伐收種地)에서 벌채(伐採)로 인한 산림환경변화량(山林環境變化量)을 조사하여 산림환경(山林環境)을 구성(構成)하는 인자들에 미치는 벌출(伐出)의 영향을 정량적(定量的)으로 분석(分析)함으로써, 산림환경(山林環境)에 미치는 임목수확작업(林木收穫作業)의 영향(影響)을 구명(究明)할 목적으로 1993년부터 1994년까지 전남(全南) 광양(光陽) 백운산(白雲山) 지역(地域) 천연활엽수림(天然闊葉樹林) 벌채지(伐採地)(서울대학교(大學校) 농업생명과학대학(農業生命科學大學) 부속(附屬) 남부연습림내(南部演習林內) 제(第) 26임반(林班))에서 수행되었다. 이 연구를 위하여 1993년에 벌채한 13ha의 벌채지(伐採地)와 이와 연접한 비벌채지(非伐採地), 그리고 벌채지(伐採地)에 개설(開設)한 약 2.6km의 운재로(運材路)를 조사(調査) 연구대상지(硏究對象地)로 선정하였다. 이 연구지(硏究地)에서 1993년부터 1994년까지 식생(植生), 토양미소동물(土壤微小動物), 강수량(降水量), 토양(土壤)의 이화학성분(理化學成分), 표면유출수량(表面流出水量), 계류수질(溪流水質), 산지사면(山地斜面) 침식량(侵蝕量) 등을 측정(測定) 분석(分析)하여 얻은 결과(結果)를 요약(要約)하면 다음과 같다. 벌채후(伐採後) 2년간 하층식생(下層植生)의 종수(種數)와 종다양도지수(種多樣度指數)는 증가하였으며, 종구성 상태는 비벌채지(非伐採地)와 상이(相異)하였다. 또한, 벌채지(伐採地) 토양(土壤)에서 용적밀도(容積密度)와 토양경도(土壤硬度)는 증가(增價)하였으며, 이 기간(期間) 동안 벌채지(伐採地)에서 토양유기물(土壤有機物), 전질소(全窒素), 유효인산(有效燐酸), 양이온치환용량(置換容量), 치환성(置換性)이온인 ($K^+$, $Na^+$, $Ca^{{+}{+}}$, $Mg^{{+}{+}}$ 등은 벌채전(伐採前)보다 감소하여 토양의 완충능력(緩衝能力)은 감소하는 것으로 해석(解析)되었다. 벌채지(伐採地)의 토양미소동물중(土壤微小動物中) 톡톡이류나 응애류의 개체수(個體數)는 비벌채지(非伐採地)보다 당년도에 평균(平均) 5배 증가하였다. 반면, 다음 해에는 벌채(伐採) 당년도보다 감소하였지만, 비벌채지(非伐採地)보다는 많은 경향을 보였다. 한편, 토양미소동물(土壤微小動物)의 변화에 유의(有意)한 영향을 미치는 주요인자는 토양수분(土壤水分), 토양(土壤)의 용적밀도(容積密度), $Mg^{{+}{+}}$ 이온, 양이온치환용량, 그리고 토양깊이 5(0~10)cm에서의 지중온도(地中溫度) 순(順)이었다. 강수(降水)의 표면유출수량(表面流出水量)은 벌채(伐採) 당년도에는 비벌채지(非伐採地)보다 28%, 다음 해에는 24.5%가 증가하였다. 이 기간(期間)동안 벌채지(伐採地) 유역(流域) 계류수(溪流水)의 BOD, COD, pH 등은 상수원수(上水源水) 1급 기준(基準)의 범위내였고, Cd, Pb, 유기인(有機燐), Cu 등 중금속(重金屬)은 검출(檢出)되지 않았으며, 음용수(飮用水) 8개 항목은 먹는 물 수질기준(水質基準) 1급의 범위내에 있었다. 또한, 벌채지(伐採地)에서 산지사면(山地斜面) 침식량(侵蝕量)은 벌채(伐採) 당년도에는 비벌채지(非伐採地)의 0.73ton/ha/yr 보다 약 7배, 다음 해에는 비벌채지(非伐採地)의 0.48ton/ha/yr 보다 약 2배 많은 것으로 나타났다. 이상의 결과(結果)를 종합해 볼 때, 대규모(大規模) 벌출작업(伐出作業)으로 인한 환경변화(環境變化)는 환경구성인자(環境構成因子)들에 영향을 미칠 뿐만 아니라 이들 영향인자들은 상호간에 밀접한 상관관계(相關關係)를 이루고 있음을 알 수 있다. 따라서 대규모(大規模) 임목수확계획시(林木收穫計劃時)에는 환경변화(環境變化)에 대한 영향을 고려한 잔존수림대(殘存樹林帶) 배치(配置), 토양침식(土壤浸蝕), 수질보전(水質保全) 등의 연구(硏究)가 지속적으로 수행(遂行)되어야 할 것이다.

  • PDF

자아이미지 일치성이 소매점자산과 고객의 재이용의도에 미치는 영향 (The Effect of Retailer-Self Image Congruence on Retailer Equity and Repatronage Intention)

  • 한상린;홍성태;이성호
    • 한국유통학회지:유통연구
    • /
    • 제17권2호
    • /
    • pp.29-62
    • /
    • 2012
  • 최근 유통환경과 소비자 라이프스타일의 변화 속에서 단순히 제품을 판매하고 유통시키는 것에 그치는 것이 아닌 소매점자산을 증대시켜 고객을 획득하고 유지할 수 있는 차별화된 경쟁우위가 필요하게 되었으며, 이러한 대안으로 소매점 이미지의 중요성이 날로 커지고 있다. 이에 따라, 본 연구는 소매점의 이미지와 자아이미지 일치성이라는 요인과 고객기반 소매점자산과의 구조적관계를 조사하여 소비자들의 재이용의도에 어떠한 영향을 미치는지를 알아보고자 하였다. 본 연구의 가장 큰 학문적 기여점은 소매점자산에 영향을 주는 자아이미지일치성이라는 선행 요인을 찾아내는데 있으며, 또한 소매점자산이 재이용의도에 강력한 선행요인임을 확인하는데 있어서 기존의 연구들이 보여준 Second-order Construct 유형의 소매점자산척도와 결과 변수간의 단일차원 인과관계가 아닌, 소매점자산을 구성하는 각각의 요인들과 재이용의도의 좀 더 구체적인 변수간의 구조적관계를 실증할 수 있게 되었다. 본 연구는 소매점과 자아의 이미지일치성을 두 가지 차원(실제 자아이미지일치성, 이상적 자아이미지일치성)으로 나누고 소매점자산의 구성요소인 소매점인지, 소매점연상, 지각된 소매점 품질, 소매점충성도에 어떠한 영향을 미치는가를 분석하고 자아이미지일치성을 토대로 평가된 소매점자산 요인들이 소매점의 재이용의도에 미치는 영향을 분석하여 소매점의 이미지의 관리와 투자에 대한 마케팅 측면의 중요성을 제시하고 있다. 연구모델에 대한 분석결과 소매점-실제 자아이미지일치성과 소매점-이상적 자아이미지일치성 모두 모두 소매점자산 요인들에 긍정적인 영향을 미쳤으며, 그 중 이상적 자아이미지일치성이 소매점자산 요인들에 미치는 상대적인 영향력이 더 크게 나타났다. 또한 소매점자산을 구성하는 각각의 요인들은 소비자의 소매점 재이용의도에 긍정적인 영향을 주는 것으로 나타났다. 이는 타겟 소비자들의 자아 이미지와 소매점의 상징적 이미지를 일치시키는 마케팅 노력을 통해 소비자들과 소매점 사이의 강력한 감정적 결속이 형성되어 해당 소매점의 자산을 높게 평가하고 지속적인 이용의도를 가져올 수 있음을 시사한다.

  • PDF

B2B 시장에서의 서비스 편의성이 관계성과에 미치는 영향 : 관계적 요인의 매개효과 분석 (Effect of Service Convenience on the Relationship Performance in B2B Markets: Mediating Effect of Relationship Factors)

  • 한상린;이성호
    • 한국유통학회지:유통연구
    • /
    • 제16권4호
    • /
    • pp.65-93
    • /
    • 2011
  • B2B 시장에서 구매자와 판매자간의 관계는 매우 밀접하고 장기화되는 것이 특징이므로 결국 단순한 제품을 판매하는 것에 그치는 것이 아닌 지속적인 서비스에 대한 중요성이 날로 커지고 있다. 산업재 연구 전반에 걸쳐서도 서비스에 대한 중요성과 관심이 증대되면서 고객이 서비스를 사용하는데 있어서 그 서비스의 품질과 함께 최근 소비자들은 얼마나 빠르고 쉽게 서비스가 제공되어 투입되는 노력을 최소화시킬 수 있는가를 매우 중요하게 생각하기 때문에 편의성이 중요한 요인으로 고려되어지고 있다. 이에 따라, 본 연구에서는 산업재 시장에서 관계만족과 관계성과를 형성하는데 중요하게 생각할 수 있는 새로운 요인이 어떤 것인가 라는 의문점에서 출발하여, 서비스 편의성과 관계성과 사이의 구조적 관계를 조사하고자 하였다. 이 연구의 가장 큰 학문적 기여점은 산업재 연구에서 주류를 이루고 있는 관계품질과 관계성과의 새로운 선행요인을 검증한 것이다. 또한 소비재 시장에서 주로 연구되었던 서비스 편의성 척도를 산업재 시장에 적용하여 그 활용도를 실험해 보았다는 데 의의가 있다. 본 연구는 서비스 편의성의 구성요소인 서비스 편의성을 결정편의성, 접근편의성, 거래편의 성, 편익편의성, 사후편익편의성 다섯가지 차원으로 구분하고 관계적 요인인 관계만족에 미치는 영향과 이러한 관계만족이 관계몰입과 관계성과에 어떠한 영향을 미치는가를 분석하여 서비스 편의성의 관리와 투자에 대한 마케팅 측면의 중요성을 제시하고 있다. 실증분석을 위해 산업재 서비스를 이용하고 있는 기업의 직원들을 대상으로 설문을 통해 데이터를 수집하였으며 서비스 편의성 ${\rightarrow}$ 관계만족 ${\rightarrow}$ 관계몰입 $\{rightarrow}$ 관계성과에 대한 인과적 구성모텔에 대해 구조방정식 모델분석으로 검증하였다. 구성모텔에 대한 분석결과 서비스 편의성을 구성하는 요소 중 접근편의성을 제외한 나머지 결정편의성, 거래편의성, 편익편의성, 사후편익편의성은 모두 관계적 요인들에 긍정적인 영향을 미쳤으며, 그 중 편익편의성이 관계적 요인에 가장 큰 영향을 주는 것으로 나타났다. 또한 추가적으로 매개효과검증을 실시하여, 서비스 편의성과 관계성과의 관계를 살펴보는데 있어서, 서비스 편의성이 관계만족과 관계몰입을 통해서 관계성과에 긍정적인 영향을 주는 구조적 인 관계를 가지고 있음을 알 수 있었다. 이는 높은 서비스 편의성에 대한 관리와 투자가 구매자로 하여금 관계에 만족하게 만들고 이렇게 형성된 관계만족은 관계에 몰입하게 하여 결과적으로는 관계성과를 가져올 수 있음을 시사한다.

  • PDF

Hierarchical Attention Network를 이용한 복합 장애 발생 예측 시스템 개발 (Development of a complex failure prediction system using Hierarchical Attention Network)

  • 박영찬;안상준;김민태;김우주
    • 지능정보연구
    • /
    • 제26권4호
    • /
    • pp.127-148
    • /
    • 2020
  • 데이터 센터는 컴퓨터 시스템과 관련 구성요소를 수용하기 위한 물리적 환경시설로, 빅데이터, 인공지능 스마트 공장, 웨어러블, 스마트 홈 등 차세대 핵심 산업의 필수 기반기술이다. 특히, 클라우드 컴퓨팅의 성장으로 데이터 센터 인프라의 비례적 확장은 불가피하다. 이러한 데이터 센터 설비의 상태를 모니터링하는 것은 시스템을 유지, 관리하고 장애를 예방하기 위한 방법이다. 설비를 구성하는 일부 요소에 장애가 발생하는 경우 해당 장비뿐 아니라 연결된 다른 장비에도 영향을 미칠 수 있으며, 막대한 손해를 초래할 수 있다. 특히, IT 시설은 상호의존성에 의해 불규칙하고 원인을 알기 어렵다. 데이터 센터 내 장애를 예측하는 선행연구에서는, 장치들이 혼재된 상황임을 가정하지 않고 단일 서버를 단일 상태로 보고 장애를 예측했다. 이에 본 연구에서는, 서버 내부에서 발생하는 장애(Outage A)와 서버 외부에서 발생하는 장애(Outage B)로 데이터 센터 장애를 구분하고, 서버 내에서 발생하는 복합적인 장애 분석에 중점을 두었다. 서버 외부 장애는 전력, 냉각, 사용자 실수 등인데, 이와 같은 장애는 데이터 센터 설비 구축 초기 단계에서 예방이 가능했기 때문에 다양한 솔루션이 개발되고 있는 상황이다. 반면 서버 내 발생하는 장애는 원인 규명이 어려워 아직까지 적절한 예방이 이뤄지지 못하고 있다. 특히 서버 장애가 단일적으로 발생하지 않고, 다른 서버 장애의 원인이 되기도 하고, 다른 서버부터 장애의 원인이 되는 무언가를 받기도 하는 이유다. 즉, 기존 연구들은 서버들 간 영향을 주지 않는 단일 서버인 상태로 가정하고 장애를 분석했다면, 본 연구에서는 서버들 간 영향을 준다고 가정하고 장애 발생 상태를 분석했다. 데이터 센터 내 복합 장애 상황을 정의하기 위해, 데이터 센터 내 존재하는 각 장비별로 장애가 발생한 장애 이력 데이터를 활용했다. 본 연구에서 고려되는 장애는 Network Node Down, Server Down, Windows Activation Services Down, Database Management System Service Down으로 크게 4가지이다. 각 장비별로 발생되는 장애들을 시간 순으로 정렬하고, 특정 장비에서 장애가 발생하였을 때, 발생 시점으로부터 5분 내 특정 장비에서 장애가 발생하였다면 이를 동시에 장애가 발생하였다고 정의하였다. 이렇게 동시에 장애가 발생한 장비들에 대해서 Sequence를 구성한 후, 구성한 Sequence 내에서 동시에 자주 발생하는 장비 5개를 선정하였고, 선정된 장비들이 동시에 장애가 발생된 경우를 시각화를 통해 확인하였다. 장애 분석을 위해 수집된 서버 리소스 정보는 시계열 단위이며 흐름성을 가진다는 점에서 이전 상태를 통해 다음 상태를 예측할 수 있는 딥러닝 알고리즘인 LSTM(Long Short-term Memory)을 사용했다. 또한 단일 서버와 달리 복합장애는 서버별로 장애 발생에 끼치는 수준이 다르다는 점을 감안하여 Hierarchical Attention Network 딥러닝 모델 구조를 활용했다. 본 알고리즘은 장애에 끼치는 영향이 클 수록 해당 서버에 가중치를 주어 예측 정확도를 높이는 방법이다. 연구는 장애유형을 정의하고 분석 대상을 선정하는 것으로 시작하여, 첫 번째 실험에서는 동일한 수집 데이터에 대해 단일 서버 상태와 복합 서버 상태로 가정하고 비교분석하였다. 두 번째 실험은 서버의 임계치를 각각 최적화 하여 복합 서버 상태일 때의 예측 정확도를 향상시켰다. 단일 서버와 다중 서버로 각각 가정한 첫 번째 실험에서 단일 서버로 가정한 경우 실제 장애가 발생했음에도 불구하고 5개 서버 중 3개의 서버에서는 장애가 발생하지 않은것으로 예측했다. 그러나 다중 서버로 가정했을때에는 5개 서버 모두 장애가 발생한 것으로 예측했다. 실험 결과 서버 간 영향이 있을 것이라고 추측한 가설이 입증된 것이다. 연구결과 단일 서버로 가정했을 때 보다 다중 서버로 가정했을 때 예측 성능이 우수함을 확인했다. 특히 서버별 영향이 다를것으로 가정하고 Hierarchical Attention Network 알고리즘을 적용한 것이 분석 효과를 향상시키는 역할을 했다. 또한 각 서버마다 다른 임계치를 적용함으로써 예측 정확도를 향상시킬 수 있었다. 본 연구는 원인 규명이 어려운 장애를 과거 데이터를 통해 예측 가능하게 함을 보였고, 데이터 센터의 서버 내에서 발생하는 장애를 예측할 수 있는 모델을 제시했다. 본 연구결과를 활용하여 장애 발생을 사전에 방지할 수 있을 것으로 기대된다.