• Title/Summary/Keyword: Entropy of activation

Search Result 122, Processing Time 0.023 seconds

Comparison of Gradient Descent for Deep Learning (딥러닝을 위한 경사하강법 비교)

  • Kang, Min-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.189-194
    • /
    • 2020
  • This paper analyzes the gradient descent method, which is the one most used for learning neural networks. Learning means updating a parameter so the loss function is at its minimum. The loss function quantifies the difference between actual and predicted values. The gradient descent method uses the slope of the loss function to update the parameter to minimize error, and is currently used in libraries that provide the best deep learning algorithms. However, these algorithms are provided in the form of a black box, making it difficult to identify the advantages and disadvantages of various gradient descent methods. This paper analyzes the characteristics of the stochastic gradient descent method, the momentum method, the AdaGrad method, and the Adadelta method, which are currently used gradient descent methods. The experimental data used a modified National Institute of Standards and Technology (MNIST) data set that is widely used to verify neural networks. The hidden layer consists of two layers: the first with 500 neurons, and the second with 300. The activation function of the output layer is the softmax function, and the rectified linear unit function is used for the remaining input and hidden layers. The loss function uses cross-entropy error.

KINETIC STUDIES OF LACTIC ACID FERMENTATION(PART 2) INFLUENCE OF TEMPERATURE ON FERMENTATION (유산균 발효에 관한 동력학적 연구(제2보) 발효에 미치는 온도의 영향)

  • LEE Keun-Tai;LEE Myeong-Sook;HAN Bong-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.12 no.3
    • /
    • pp.161-166
    • /
    • 1979
  • To know the influence of temperature on the fermentation process, a strain of Lactobacillus bulgarius was experimentally cultured three different temperature conditions of $39^{\circ}C,\;42^{\circ}C\;and\;45^{\circ}C$, pH 5.8 and mechanical agitation of 500rpm. During 20 hour's fermentation, the microbial growth attained the maximum concentration under the conditions mentioned above. However, the culturing conditions resulted different outcomes in terms of maximum concentration of the microbes and the residual concentration of substrate. Among the three temperature conditions, the fermentation at $45^{\circ}C$ was most effective and the maximum specific growth temperature conditions, the fermentation at $45^{\circ}C$ was most effective and the maximum specific growth rate was 0.58/hr. Activation energy deduced from the Arrhenius equation was 9,220cal/mole and entropy was $-33.74\;cal/^{\circ}K$ mole. Activation enthalpy was 9,845 cal/mole and free energy was 19,800 cal/mole.

  • PDF

A Study on the Ionic Dissociation Rate of $\alpha$-Chlorobenzyl Ethyl Ether by Dynamic NMR Spectroscopy-Chlorobenzyl Ethyl Ether by Dynamic NMR Spectroscopy (動的 NMR에 依한 $\alpha$-Chlorobenzyl Ethyl Ether의 이온解離速度에 關한 硏究)

  • Chang-Yol Kim
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.44-52
    • /
    • 1980
  • Ionic dissociation rates of $\alpha$-chlorobenzyl ethyl ether in each solvent of toluene-$d_8$ and carbon tetrachloride were measured by the method of dynamic NMR spectroscopy. The spin system of these 1H NMR spectra was $AB_3$. The theoretical spectrum was calculated by computer simulation of dynamic NMR spectra, which agreed very well with observed spectra. From this computer simulation, the ionic dissociation rate constant k was obtained, and by Eyring plot with it, slope and intercept length was gained, from which kinetic parameters were calculated.The easiness of ionic dissociation depended upon solvent polarity. Activation enthalpy was 4.7 kcal/mole in toluene-$d_8$, 10.7 kcal/mole in carbon tetrachloride, and activation entropy was -35. 8 e.u. in toluene-$d_8$, -14.4 e.u. in carbon tetrachloride. It was understood that though the ${\Delta}H^{neq}$ value was small, this ionic dissociation had an easier procession in nonpolar solvents with increasing temperatures. Considering that the ionic dissociation could be thought as the first step of $S_N1$ mechanism, attention might be paid to the results that the value of ${\Delta}S^{neq}$ had a large negative value in comparison with a small ${\Delta}H^{neq}$.

  • PDF

Analysis on Isotherm, Kinetic and Thermodynamic Properties for Adsorption of Acid Fuchsin Dye by Activated Carbon (활성탄에 의한 Acid Fuchsin 염료의 흡착에 대한 등온선, 동력학 및 열역학 특성치에 대한 해석)

  • Lee, Jong Jib
    • Korean Chemical Engineering Research
    • /
    • v.58 no.3
    • /
    • pp.458-465
    • /
    • 2020
  • Isotherms, kinetics and thermodynamic properties for adsorption of acid fuchsin (AF) dye by activated carbon were carried out using variables such as dose of adsorbent, pH, initial concentration and contact time and temperature. The effect of pH on adsorption of AF showed a bathtub with high adsorption percentage in acidic (pH 8). Isothermal adsorption data were fitted to the Freundlich, Langmuir, and Dubinin-Radushkevich isotherm models. Freundlich isothem model showed the highest agreement and confirmed that the adsorption mechanism was multilayer adsorption. It was found that adsorption capacity increased with increasing temperature. Freundlich's separation factor showed that this adsorption process was an favorable treatment process. Estimated adsorption energy by Dubinin-Radushkevich isotherm model indicated that the adsorption of AF by activated carbon is a physical adsorption. Adsorption kinetics was found to follow the pseudo-second-order kinetic model. Surface diffusion at adsorption site was evaluated as a rate controlling step by the intraparticle diffusion model. Thermodynamic parameters such as activation energy, Gibbs free energy, enthalpy entropy and isosteric heat of adsorption were investigated. The activation energy and enthalpy change of the adsorption process were 21.19 kJ / mol and 23.05 kJ / mol, respectively. Gibbs free energy was found that the adsorption reaction became more spontaneously with increasing temperature. Positive entropy was indicated that this process was irreversible. The isosteric heat of adsorption was indicated physical adsorption in nature.

Study on Equilibrium, Kinetic and Thermodynamic for Adsorption of Quinoline Yellow by Granular Activated Carbon (입상 활성탄에 의한 Quinoline Yellow의 흡착에 대한 평형, 동력학 및 열역학에 관한 연구)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.20 no.1
    • /
    • pp.35-41
    • /
    • 2014
  • Batch adsorption studies were carried out for equilibrium, kinetic and thermodynamic parameters for quinoline yellow adsorption by granular activated carbon ($8{\times}30mesh$, $1,578m^2/g$) with varying the operating variables like initial concentration, contact time and temperature. Equilibrium adsorption data were fitted into Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms. From estimated Langmuir constant ($R_L=0.0730{\sim}0.0854$), Freundlich constant (1/n = 0.2077~0.2268), this process could be employed as effective treatment for removal of quinoline yellow. From calculated Temkin constant (B = 15.759~21.014 J/mol) and Dubinin-Radushkevich constant (E = 1.0508~1.1514 kJ/mol), this adsorption process is physical adsorption. From kinetic experiments, the adsorption process were found to confirm to the pseudo second order model with $r^2$ > 0.99 for all concentrations and temperatures. Thermodynamic parameters like activation energy, change of free energy, enthalpy, and entropy were also calculated to predict the nature adsorption. The activation energy value (+35.137 kJ/mol) and enthalpy change (35.03 kJ/mol) indicated endothermic nature of the adsorption process. Entropy change (+134.38 J/mol K) showed that increasing disorder in process. Free energy change found that the spontaneity of process increased with increasing adsorption temperature.

Kinetics of Base Hydrolysis of Some Chromen-2-one Indicator Dyes in Different Solvents at Different Temperatures (여러 온도 및 용매 하에서 수행된 chromen-2-one 지시약 염료들의 염기성 가수분해 반응에 대한 속도론적 연구)

  • Abu-Gharib, Ezz A.;EL-Khatib, Rafat M.;Nassr, Lobna A.E.;Abu-Dief, Ahmed M.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.346-353
    • /
    • 2011
  • Base hydrolysis of 7-hydroxy-2H-chromen-2-one (HC) and 7-hydroxy-2H-chromen-2-one-4-acetic acid (HCA) in aqueous-methanol and aqueous-acetone mixtures were studied kinetically at temperature range from 283 to 313 K. The activation parameters of the reactions were evaluated and discussed. Moreover, the change in the activation energy barrier of the investigated compounds from water to water-methanol and water-acetone mixtures was estimated from the kinetic data. It is observed that the change in activation barriers is more or less the same for the hydrolysis of HC and HCA. Base hydrolysis of HC and HCA follows a rate law with $k_{obs}=k_2[OH^-]$. The decrease in the rate constants of HC and HCA as the proportion of methanol or acetone increases is due to the destabilization of $OH^-$ ion. The high negative values of entropy of activation support the proposal mechanism, i.e. the investigated reaction takes place via the formation of an intermediate complex. Moreover, these values refer to the rigidity and stability of the intermediate complex. Thus, the ring opening of the intermediate complex would be the rate controlling step.

Kinetics of the Reaction of Benzyl Chlorides with Pyridine in Methanol Solvent under High Pressure (고압하의 메탄올 용매내에서 염화벤질류와 피리딘과의 반응에 대한 반응속도론적 연구)

  • Oh Cheun Kwon;Young Cheul Kim;Jin Burm Kyong;Kee Joon Choi
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.413-418
    • /
    • 1987
  • Rates of the reaction for p-nitro benzyl chloride, benzyl chloride and p-methyl benzyl chloride with pyridine in methanol solvent have been measured by an electric conductivity method at 40$^{\circ}$C and 50$^{\circ}$C under various pressures (1∼2000bar). Pseudo first-order rate constants and second-order rate constants were determined. Rates of these reactions were increased in the order p-NO$_2$ < p-H < p-CH$_3$ and increased with temperature, pressure and concentration of pyridine. From those rate constants, the activation parameters were evaluated. The activation volume and the activation compressibility coefficient are both negative values, but the activation enthalpy is positive and the activation entropy is large negative value. From the evaluation of the ground state and transition state which was resulted from substituents and pressure, it was found that this reaction proceeds through S$_N$2 reaction, and S$_N$2 fashion is slightly disappeared as pressure increases.

  • PDF

Effects of Loading on Biomechanical Analysis of Lower Extremity Muscle and Approximate Entropy during Continuous Stair Walking (지속적인 계단 보행에서 부하가 하지 근육의 생체역학적 변인과 근사 엔트로피에 미치는 영향)

  • Kim, Sung-Min;Kim, Hye-Ree;Ozkaya, Gizem;Shin, Sung-Hoon;Kong, Se-Jin;Kim, Eon-Ho;Lee, Ki-Kwang
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.3
    • /
    • pp.323-333
    • /
    • 2015
  • Objective : The purpose of this study was to investigate the changes of gait patterns and muscle activations with increased loads during stair walking. Also, it can be used as descriptive data about continuous stair walking in a real life setting. Method : Twelve sedentary young male adults(Age: $27.0{\pm}1.8yrs$, Weight: $65.8{\pm}9.9kg$) without any lower extremity injuries participated in this study. Participants performed stair walking up 7 floors and their ascending and descending motion on each floor was analyzed. A wireless electromyography(EMG) were attached on the Rectus Femoris(RF), Biceps Femoris(BF), Gastrocnemius(GN), Tibialis Anterior(TA) muscle to calculate integrated EMG(iEMG), median frequency(MDF) and co-contraction index(CI). Chest and left heel accelerometer signal were recorded by wireless accelerometer and those were used to calculate approximate entropy(ApEn) for analyzing gait pattern. All analyses were performed with SPSS 21.0 and for repeated measured ANOVA and Post-hoc was LSD. Results : During ascending stairs, there were a statistically significant difference in Walking time between 1-2nd and other floors(p=.000), GN iEMG between 2-3th and 6-7th(p=.043) floor, TA MDF between 1-2nd and 5-6th(p=.030), 6-7th(p=.015) floor and TA/GN CI between 2-3th and 6-7th(p=.038) floor and ApEn between 1-2nd and 6-7th(x: p=.003, y: p=.005, z: p=.006) floor. During descending stairs, there were a statistically significant difference in TA iEMG between the 6-5th and 3-2nd(p=.026) floor, and for the ApEn between the 1-2nd and 6-7th(x: p=.037, y: p=.000, z: p=.000) floor. Conclusion : Subjects showed more regular pattern and muscle activation response caused by regularity during ascending stairs. Regularity during the first part of stair-descending could be a sign of adaptation; however, complexity during the second part could be a strategy to decrease the impact.

The Biochemical Characterization of D-Hydroxyisovalerate Dehydrogenase, a Key Enzyme in the Biosynthesis of Enniatins

  • Lee, Chan; Zocher, Rainer
    • BMB Reports
    • /
    • v.29 no.6
    • /
    • pp.493-499
    • /
    • 1996
  • The biochemical properties of purified D-hydruxyisovalerate dehydrogenase from Fusarium sambucinum was elucidated. D-Hydroxyisovalerate dehydrogenase produced solely D-hydroxyisovalerate from 2-ketoisovalerate. The isoelectric point of the purified enzyme was 7.0. The enzyme was highly specific with 2-ketoisovalerate ($K_{m}=0.188$ mM, $V_{max}=8.814$ mmol/min mg) and 2-keto-3-methyl-n-valerate ($K_{m}=0.4$ mM, $V_{max}=1.851$ mmol/min mg) for the reductive reaction. This was also seen by comparing D-hydroxyisovalerate ($K_{m}=1.667$ mM, $V_{max}=0.407$ mmol/min mg) and D-hydroxy-3-methyl-n-valerate ($K_{m}=6.7$ mM, $V_{max}=0.648$ mmol/min mg) for the oxidative reaction. Thiol blocking reagents, such as iodoacetamide, N-ethylmaleimide and p-chloromecuribenzoate inhibited about 80% of enzyme activity at 0.02 mM, 50 mM and 50 mM, respectively. The enzyme activity was also inhibited by the addition of 0.1 mM of various metal ions, such as $Fe^{2+}$ (67%), $Cu^{2+}$ (88%), $Zn^{2+}$ t (76%) and $Mg^{2+}$ (9%). The enzyme was stable over three months in 50 mM potassium phosphate buffer (pH 5~7) at $-80^{\circ}C$. However the purified enzyme lost 30% of its activity in the same buffer after 24 h at $4^{\circ}C$. The studies about thermal inactivation of D-hydroxyisovalerate dehydrogenase exhibit 209.2 kJ/M of activation enthalpy and 0.35 kJ/mol K of activation entropy.

  • PDF

Pressure Effect on the Aquation of $trans-[Cr(tmd)_2F_2]^+\;and\;trans-[Cr(tmd)_2FCl]^+$ Ions ($trans-[Cr(tmd)_2F_2]^+$$trans-[Cr(tmd)_2FCl]^+$ 착이온의 수화반응에 미치는 압력의 영향)

  • Jong-Jae Chung;Han-Tae Kim;Sung-Oh Bek
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.164-167
    • /
    • 1989
  • The rate for the aquation of $trans-[Cr(tmd)_2FX]^+(X=F^-,\;Cl^-)$ ion in aqueous acidic solution has been measured by spectrophotometric method at various temperatures and pressures. The rate constants are increased with increasing temperatures and pressures. The values of activation entropy are 5.2 eu for $trans-[Cr(tmd)_2F_2]^+$ and -16.62 eu for $trans-[Cr(tmd)_2FCl]^+$ ions. Activation volumes have all negative values and lie in the limited range $-3∼-2\;cm^3mol^{-1}$ for $trans-[Cr(tmd)_2F_2]^+$ and $-8∼-7\;cm^3mol^{-1} for $trans-[Cr(tmd)_2FCl]^+$ ion. From the above results, we may deduce that the mechanism for the aquation of $trans-[Cr(tmd)_2F_2]^+$ and $trans-[Cr(tmd)_2FCl]^+$ ions is interchange-associative mechanism and dissociative mechanism respectively.

  • PDF