• Title/Summary/Keyword: Entropy evaluation method

Search Result 94, Processing Time 0.027 seconds

A Study on the Entropy Evaluation Method for Time-Dependent Noise Sources of Windows Operating System and It's Applications (윈도우 운영체제의 시간 종속 잡음원에 대한 엔트로피 평가 방법 연구)

  • Kim, Yewon;Yeom, Yongjin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.4
    • /
    • pp.809-826
    • /
    • 2018
  • The entropy evaluation method for noise sources is one of the evaluation methods for the random number generator that is the essential element of modern cryptographic systems and cryptographic modules. The primary entropy evaluation methods outside of the country are more suitable to apply to hardware noise sources than software noise sources, and there is a difficulty in quantitative evaluation of entropy by software noise source. In this paper, we propose an entropy evaluation method that is suitable for software noise sources, considering characteristics of software noise sources. We select time-dependent noise sources that are software noise sources of Windows OS, and the heuristic analysis and experimental analysis are performed considering the characteristics of each time-dependent noise source. Based on these analyses, we propose an entropy harvest method from the noise source and the min-entropy estimation method as the entropy evaluation method for time-dependent noise sources. We also show how to use our entropy evaluation method in the Conditioning Component described in SP 800-90B of NIST(USA).

A Study on the Weights of the Condition Evaluation of Rock Slope used in Entropy and AHP Method (AHP 및 엔트로피 기법을 적용한 절리암반비탈면 상태평가항목의 가중치 연구)

  • Seong, Joohyun;Byun, Yoseph
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.5
    • /
    • pp.61-66
    • /
    • 2016
  • Many cut slopes are located along national roads, there were the collapse of cut slopes. In this study, the weights for condition evaluation of rock slopes was calculated using the entropy method and analytic hierachy process(AHP) method. The entropy analysis was performed using 95 cut slope data, and the AHP analysis was performed by a questionnaire to several expert. The weights based on analysis results were compared with evaluation weights of existing standard. As a result of this study, there was the difference of weights among the analytical methods. Later on, if this study's results is used to improvement current evaluation weights, it will be possible to perform the reliable condition evaluation.

PSS Evaluation Based on Vague Assessment Big Data: Hybrid Model of Multi-Weight Combination and Improved TOPSIS by Relative Entropy

  • Lianhui Li
    • Journal of Information Processing Systems
    • /
    • v.20 no.3
    • /
    • pp.285-295
    • /
    • 2024
  • Driven by the vague assessment big data, a product service system (PSS) evaluation method is developed based on a hybrid model of multi-weight combination and improved TOPSIS by relative entropy. The index values of PSS alternatives are solved by the integration of the stakeholders' vague assessment comments presented in the form of trapezoidal fuzzy numbers. Multi-weight combination method is proposed for index weight solving of PSS evaluation decision-making. An improved TOPSIS by relative entropy (RE) is presented to overcome the shortcomings of traditional TOPSIS and related modified TOPSIS and then PSS alternatives are evaluated. A PSS evaluation case in a printer company is given to test and verify the proposed model. The RE closeness of seven PSS alternatives are 0.3940, 0.5147, 0.7913, 0.3719, 0.2403, 0.4959, and 0.6332 and the one with the highest RE closeness is selected as the best alternative. The results of comparison examples show that the presented model can compensate for the shortcomings of existing traditional methods.

Evaluation of Raingauge Networks in the Soyanggang Dam River Basin (소양강댐 유역의 강우관측망 적정성 평가)

  • Kim, Jae-Bok;Bae, Young-Dae;Park, Bong-Jin;Kim, Jae-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.178-182
    • /
    • 2007
  • In this study, we evaluated current raingauge network of Soyanggang dam region applying spatial-correlation analysis and Entropy theory to recommend an optimized raingauge network. In the process of analysis, correlation distance of raingauge stations is estimated and evaluated via spatial-correlation method and entropy method. From this correlation distances, respective influencing radii of each dataset and each methods is assessed. The result of correlation and entropy analysis has estimated correlation distance of 25.546km and influence radius of 7.206km, deducing a decrease of network density from $224.53km^2$ to $122.47km^2$ which satisfy the recommended minimum densities of $250km^2$ in mountainous regions(WMO, 1994) and an increase of basin coverage from 59.3% to 86.8%. As for the elevation analysis the relative evaluation ratio increased from 0.59(current) to 0.92(optimized) resulting an obvious improvement.

  • PDF

Entropy-based Correlation Clustering for Wireless Sensor Networks in Multi-Correlated Regional Environments

  • Nga, Nguyen Thi Thanh;Khanh, Nguyen Kim;Hong, Son Ngo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.2
    • /
    • pp.85-93
    • /
    • 2016
  • The existence of correlation characteristics brings significant potential advantages to the development of efficient routing protocols in wireless sensor networks. This research proposes a new simple method of clustering sensor nodes into correlation groups in multiple-correlation areas. At first, the evaluation of joint entropy for multiple-sensed data is considered. Based on the evaluation, the definition of correlation region, based on entropy theory, is proposed. Following that, a correlation clustering scheme with less computation is developed. The results are validated with a real data set.

Multi-Dimensional Selection Method of Port Logistics Location Based on Entropy Weight Method

  • Ruiwei Guo
    • Journal of Information Processing Systems
    • /
    • v.19 no.4
    • /
    • pp.407-416
    • /
    • 2023
  • In order to effectively relieve the traffic pressure of the city, ensure the smooth flow of freight and promote the development of the logistics industry, the selection of appropriate port logistics location is the basis of giving full play to the port logistics function. In order to better realize the selection of port logistics, this paper adopts the entropy weight method to set up a multi-dimensional evaluation index, and constructs the evaluation model of port logistics location. Then through the actual case, from the environmental dimension and economic competition dimension to make choices and analysis. The results show that port d has the largest logistics competitiveness and the highest relative proximity among the three indicators of hinterland city economic activity, hinterland economic structure, and port operation capacity of different port logistics locations, which has absolute advantages. It is hoped that the research results can provide a reference for the multi-dimensional selection of port logistics site selections.

Reliability evaluation of water distribution network considering mechanical characteristics using informational entropy

  • Kashani, Mostafa Ghanbari;Hosseini, Mahmood;Aziminejad, Armin
    • Structural Engineering and Mechanics
    • /
    • v.58 no.1
    • /
    • pp.21-38
    • /
    • 2016
  • Many studies have been carried out to investigate the important factors in calculating the realistic entropy amount of water distribution networks, but none of them have considered both mechanical and hydraulic characteristics of the networks. Also, the entropy difference in various networks has not been calculated exactly. Therefore, this study suggested a modified entropy function to calculate the informational entropy of water distribution networks so that the order of demand nodes and entropy difference among various networks could be calculated by taking into account both mechanical and hydraulic characteristics of the network. This modification was performed through defining a coefficient in the entropy function as the amount of outflow at each node to all dissipated power in the network. Hence, a more realistic method for calculating entropy was presented by considering both mechanical and hydraulic characteristics of network while keeping simplicity. The efficiency of the suggested method was evaluated by calculating the entropy of some sample water networks using the modified function.

Models and Methods for the Evaluation of Automobile Manufacturing Supply Chain Coordination Degree Based on Collaborative Entropy

  • Xiao, Qiang;Wang, Hongshuang
    • Journal of Information Processing Systems
    • /
    • v.18 no.2
    • /
    • pp.208-222
    • /
    • 2022
  • Through the analysis of the coordination mechanism of the supply chain system of China's automobile manufacturing industry, the factors affecting the supply subsystem, the manufacturing subsystem, the sales subsystem, and the consumption subsystem are sorted out, the supply chain coordination index system based on the influence factor of four subsystems is established. The evaluation models of the coordination degree in the subsystem of the supply chain, the coordination degree among the subsystems, and the comprehensive coordination degree are established by using the efficiency coefficient method and the collaborative entropy method. Experimental results verify the accuracy of the evaluation model using the empirical analysis of the collaborative evaluation index data of China's automobile manufacturing industry from 2000 to 2019. The supply chain synergy of automobile manufacturing industry was low from 2001 to 2005, and it increased to a certain extent from 2006 to 2008 with a small growth rate from 0.10 to 0.15. From 2009 to 2013, the supply chain synergy of automobile manufacturing industry increased rapidly from 0.24 to 0.49, and it also increased rapidly but fluctuated from 2014 to 2019, first rising from 0.68 to 0.84 then dropping to 0.71. These results provide reference for the development of China's automobile manufacturing supply chain system and scientific decision-making basis for the formulation of relevant policies of the automobile manufacturing industry.

A trust evaluation method for improving nodes utilization for wireless sensor networks

  • Haibo, Shen;Kechen, Zhuang;Hong, Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1113-1135
    • /
    • 2018
  • Existing trust evaluation models for wireless sensor networks can accurately and objectively evaluate trust value of nodes, but the nodes' energy saving problem was ignored. Especially when there are a few malicious nodes in a network, the overall trust value calculation for all nodes would waste lots of energy. Beside that, the network failure caused by nodes death was also not considered. In this paper, we proposed a method for avoiding energy hole which applied trust evaluation models and a trust evaluation method based on information entropy, so as to achieve the purpose of improving nodes utilization. Simulation results show that the proposed method can effectively improve nodes utilization, and it has reasonable detection rate and lower false alert rate compared to other classical methods.

Stability evaluation for the excavation face of shield tunnel across the Yangtze River by multi-factor analysis

  • Xue, Yiguo;Li, Xin;Qiu, Daohong;Ma, Xinmin;Kong, Fanmeng;Qu, Chuanqi;Zhao, Ying
    • Geomechanics and Engineering
    • /
    • v.19 no.3
    • /
    • pp.283-293
    • /
    • 2019
  • Evaluating the stability of the excavation face of the cross-river shield tunnel with good accuracy is considered as a nonlinear and multivariable complex issue. Understanding the stability evaluation method of the shield tunnel excavation face is vital to operate and control the shield machine during shield tunneling. Considering the instability mechanism of the excavation face of the cross-river shield and the characteristics of this engineering, seven evaluation indexes of the stability of the excavation face were selected, i.e., the over-span ratio, buried depth of the tunnel, groundwater condition, soil permeability, internal friction angle, soil cohesion and advancing speed. The weight of each evaluation index was obtained by using the analytic hierarchy process and the entropy weight method. The evaluation model of the cross-river shield construction excavation face stability is established based on the idea point method. The feasibility of the evaluation model was verified by the engineering application in a cross-river shield tunnel project in China. Results obtained via the evaluation model are in good agreement with the actual construction situation. The proposed evaluation method is demonstrated as a promising and innovative method for the stability evaluation and safety construction of the cross-river shield tunnel engineerings.