• Title/Summary/Keyword: Entrained Flow Gasifier

Search Result 44, Processing Time 0.038 seconds

Atomization characteristics of burner nozzle for entrained flow gasifier (습식 석탄 가스화 장치에서 버너노즐에 따른 미립화 특성)

  • Ra, Ho-Won;Lee, Jae-Goo;Choi, Young-Chan;Yoon, Sang-Jun;Son, Young-Il;Hong, Jae-Chang
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.353-355
    • /
    • 2008
  • 최근 석탄 가스화 기술은 화석연료인 석탄을 기존의 공해물질 발생을 90%이상 줄이면서 고효율로 활용할 수 있는 방법으로 각광받고 있다. 본 연구는 습식 석탄 가스화기에서 가스화의 핵심적인 요소인 버너의 분무 관계 분야에 대한 분무 특성 및 무화성능을 높일 수 있는 분무기의 구조 및 운전 조건 등을 제시 할 목적으로 분무 시 내부를 관찰 할 수 있는 아크릴을 이용하여 내부 혼합식 버너를 제작하였다. 미립화 특성을 파악하기 위하여 $O_2$/Fuel Ratio 및 버너의 내부 혼합 방식, 분사각도, 각 분사 높이에 따른 미립화 특성을 관찰하였으며, 입도 분석은 심파텍사의 입도 분석기를 이용하여 측정하였다. 내부 혼합식 버너의 입도는 분사 각도와 $O_2$/Fuel Ratio에 따라서 변화하는 경향을 나타냈으며, 공급되어지는 Fuel은 석탄 슬러리와 물을 이용하여 각각의 입도를 측정하였다. slurry의 공급량이 고정된 상태에서 산소 공급량이 증가함에 따라 미립화도는 증가하는 경향을 나타내었으며, 슬러리 공급량과 산소 공급량이 동일한 경우 버너의 분사 각도에 따라 미립화도가 다르게 나타나는 특성을 관찰하였다.

  • PDF

A Study of Coal Gasification Process Modeling (석탄가스화 공정 모델링에 관한 연구)

  • Lee, Joong-Won;Kim, Mi-Yeong;Chi, Jun-Hwa;Kim, Si-Moon;Park, Se-Ik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.5
    • /
    • pp.425-434
    • /
    • 2010
  • Integrated gasification combined cycle (IGCC) is an efficient and environment-friendly power generation system which is capable of burning low-ranked coals and other renewable resources such as biofuels, petcokes and residues. In this study some process modeling on a conceptual entrained flow gasifier was conducted using the ASPEN Plus process simulator. This model is composed of three major steps; initial coal pyrolysis, combustion of volatile components, and gasification of char particles. One of the purposes of this study is to develop an effective and versatile simulation model applicable to numerous configurations of coal gasification systems. Our model does not depend on the hypothesis of chemical equilibrium as it can trace the exact reaction kinetics and incorporate the residence time calculation of solid particles in the reactors. Comparisons with previously reported models and experimental results also showed that the predictions by our model were pretty reasonable in estimating the products and the conditions of gasification processes. Verification of the accuracy of our model was mainly based upon how closely it predicts the syngas composition in the gasifier outlet. Lastly the effects of change oxygen are studied by sensitivity analysis using the developed model.

Experimental study on the characteristics of Vacuum residue gasification in an entrained-flow gasifier (습식 분류상 가스화장치를 이용한 중질잔사유(Vacuum residue)의 가스화 특성연구)

  • ;;;;;;;A. Renevier
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2002.11a
    • /
    • pp.171-184
    • /
    • 2002
  • Approx. 200,000 bpd vacuum residue oil is produced from oil refineries in Korea. These are supplying to use asphalt, high sulfur fuel oil, and upgrading at the residue hydro-desulfurization unit. Vacuum residue oil has high energy content, however high sulfur content and high concentration of heavy metals represent improper low grade fuel. To meet growing demand for effective utilization of vacuum residue oil from refineries, recently some of the oil refinery industries in Korea, such as SK oil refinery and LG Caltex refinery, have already proceeded feasibility study to construct 435-500 MWe IGCC power plant and hydrogen production facilities. Recently, KIER(Korea Institute of Energy Research) are studing on the Vacuum Residue gasification process using an oxygen-blown entrained-flow gasifier. The experiment runs were evaluated under the reaction temperature : 1,100~1,25$0^{\circ}C$, reaction pressure : 1~6kg/$\textrm{cm}^2$G, oxygen/V.R ratio : 0.8~0.9 and steam/V.R ratio : 0.4-0.5. Experimental results show the syngas composition(CO+H$_2$) : 85~93%, syngas flow rate : 50~110Mm$^3$/hr, heating value : 2,300~3,000 ㎉/Nm$^3$, carbon conversion : 65~92, cold gas efficiency : 60~70%. Also equilibrium modeling was used to predict the vacuum residue gasification process and the predicted values were compared reasonably well with experimental data.

  • PDF

Experimental Study on the Characteristics of Vacuum Residue Gasification in an Entrained-flow Gasifier (습식 분류상 가스화장치를 이용한 중질잔사유(Vacuum Residue)의 가스화 특성연구)

  • ;;;;;;;A. Renevier
    • Journal of Energy Engineering
    • /
    • v.12 no.1
    • /
    • pp.49-57
    • /
    • 2003
  • Approx. 200.000 bpd vacuum residue oil is produced from oil refineries in Korea, and is supplied to use asphalt, high sulfur fuel oil and for upgrading at the residue hydro-desulfurization unit. Vacuum residue oil has high energy content, however its high sulfur content and high concentration of heavy metals represent improper low grade fuel. To meet growing demand for effective utilization of vacuum residue oil from refineries, recently some of the oil refinery industries in Korea, such as SK oil refinery and LG Caltex refinery, have already proceeded feasibility study to construct 435~500 MWe IGCC power plant and hydrogen production facilities. Recently, KIER (Korea Institute of Energy Research) are studying on the Vacuum Residue gasification process using an oxygen-blown entrained-flow gasifier. The experiment runs were evaluated under the reaction temperature: 1.100~l,25$0^{\circ}C$, reaction pressure: 1~6 kg/$\textrm{cm}^2$G, oxygen/V.R ratio: 0.8~0.9 and steam/V.R ratio: 0.4~0.5. Experimental results show the syngas composition (CO+H$_2$): 85~93%, syngas flow rate: 50~l10 Nm$^3$/hr, heating value: 2,300~3,000 k㎈/Nm$^3$, carbon conversion: 65~92, cold gas efficiency: 60~70%. Also equilibrium modeling was used to predict the vacuum residue gasification process and the predicted values were compared reasonably well with experimental data.

Co-gasification Characteristics of Coal Mixed with Pet-coke in a 1T/D Entrained-Flow Gasifier (1T/D 분류층 가스화기에서의 석탄, 석유코크스 혼합연료 가스화 특성 연구)

  • Lee, Jae-Goo;Yoon, Sang-Jun;Choi, Young-Chan;Ra, Ho-Won;Son, Yung-Il
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.453-456
    • /
    • 2007
  • 감압 증류 후 생성되는 중질유의 고도화를 위하여 코킹 공정을 거친 후 정유 부산물로 생성되는 열적으로 매우 안정하고, 높은 발열량을 갖는 반면 황, 바나듐 함량이 높은 석유코크스의 효과적인 이용을 위하여 본 연구에서는 가스화 공정을 적용하였다. 1T/D 용량의 분류층 가스화기를 이용하여 유연탄(drayton coal), 석유코크스, 또는 혼합한 경우의 가스화 성능을 알아보았으며, 각각의 경우에 대하여 비교하여 보았다. 높은 열 안정성을 갖는 석유코크스의 효과적인 가스화를 위하여 반응기 내 체류시간 및 버너 노즐 변경에 따른 가스화 성능 개선을 시도하였으며, 이때의 온도, 산소/원료 공급량 조건에 따른 생성가스 성분 및 탄소전환율, 냉가스효율 변화 특성을 알아보았다. 버너 노즐 구경 변경으로 인한 슬러리의 미립화를 통하여 향상된 탄소전환율 및 냉가스효율을 얻을 수 있었다.

  • PDF

A Prediction of Coal Ash Slagging for Entrained Flow Gasifiers (분류층 석탄가스화기 Slag 용융특성 예측)

  • Koo, Jahyung;Kim, Bongkeum;Kim, Youseok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.108.1-108.1
    • /
    • 2010
  • 분류층 가스화기는 석탄과 산소(공기) 및 수증기가 반응하여 $1200{\sim}1600^{\circ}C$의 고온, 20~60기압의 고압에서 작동되어 합성가스를 생성하며 합성가스에 포함된 입자 및 황화합물 등을 정제설비를 통하여 정제 후 발전 및 화학원료로 사용한다. 석탄가스화 중 석탄에 포함된 대부분의 회분은 용융슬래그 형태로 가스화기 벽면을 따라 흘러 내려 가스화기 하부의 냉각수조에서 급랭되어 배출된다. 이때 용융슬래그의 원활한 배출을 위해서는 일정범위의 점도를 유지하는 것이 필요하다. 슬래그의 점도는 가스화기 온도 및 Ash의 조성에 따라 크게 변하며 가스화기 설계 및 운전 시 매우 중요한 변수이다. 따라서 최적의 설계 및 운전을 위해서는 Ash의 점도예측이 중요하며, 분류층 가스화기내부에서 Ash 점도 예측을 위한 DooVisco 프로그램을 개발하였다. DooVisco는 가스화기 내부에서 슬래그 용융온도 및 온도별 점도, 가스화기 최소 운전온도 및 석회석 투입 효과 분석뿐만 아니라 석탄의 혼합 사용 시의 특성 예측도 가능하도록 개발되었다. DooVisco는 슬래그 주요 4성분인 SiO2, Al2O3, CaO, FeO 성분에 대한 Phase Diagram을 이용하여 1차적으로 슬래그용융온도(Liquidus Temperature)를 예측하고, 주요 4 성분 외에 Na2O, MgO, K2O, TiO2 등을 고려한 Kalmanovich Model을 이용하여 점도를 예측한다. 최종적으로 슬래그 용융온도와 점도를 활용하여 분류층 가스화기 운전가능 온도범위를 예측한다. 개발된 DooVisco를 활용하여 300MW급 실증 IGCC 플랜트에 사용가능성이 있는 석탄을 대상으로 슬래그의 용융온도 및 점도 등을 예측하였으며 최적 운전을 위한 슬form점도 조절용 Flux인 석회석 투입량 등을 평가하였다. 평가 결과 슬래그 용융온도가 $1700^{\circ}C$ 이상으로 석회석 투입이 필요하다고 판단되었다. 약 가스화기 내부 온도를 $1500^{\circ}C$ 정도에서 원활한 운전을 위해서는 석탄 대비 약 10% 내외의 석회석 투입이 필요할 것으로 평가되었다. DooVisco는 분류층 가스화기 설 계시 가스화기 최적 운전 온도 설정 및 Flux 투입필요성, 종류, 투입량 선정에 활용될 수 있을 뿐만 아니라 플랜트 운전시 석탄의 탄종 적합성 등을 판단하는데 활용될 수 있을 것이라 판단된다.

  • PDF

A study on the engineering optimization for the commercial scale coal gasification plant (상용급 석탄가스화플랜트 최적설계에 관한 연구)

  • Kim, Byeong-Hyeon;Min, Jong-Sun;Kim, Jae-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.131.1-131.1
    • /
    • 2010
  • This study was conducted for engineering optimization for the gasification process which is the key factor for success of Taean IGCC gasification plant which has been driven forward under the government support in order to expand to supply new and renewable energy and diminish the burden of the responsibility for the reduction of the green house gas emission. The gasification process consists of coal milling and drying, pressurization and feeding, gasification, quenching and HP syngas cooling, slag removal system, dry flyash removal system, wet scrubbing system, and primary water treatment system. The configuration optimization is essential for the high efficiency and the cost saving. For this purpose, it was designed to have syngas cooler to recover the sensible heat as much as possible from the hot syngas produced from the gasifier which is the dry-feeding and entrained bed slagging type and also applied with the oxygen combustion and the first stage cylindrical upward gas flow. The pressure condition inside of the gasifier is around 40~45Mpg and the temperature condition is up to $1500{\sim}1700^{\circ}C$. It was designed for about 70% out of fly ash to be drained out throughout the quenching water in the bottom part of the gasifier as a type of molten slag flowing down on the membrane wall and finally become a byproduct over the slag removal system. The flyash removal system to capture solid particulates is applied with HPHT ceramic candle filter to stand up against the high pressure and temperature. When it comes to the residual tiny particles after the flyash removal system, wet scurbbing system is applied to finally clean up the solids. The washed-up syngas through the wet scrubber will keep around $130{\sim}135^{\circ}C$, 40~42Mpg and 250 ppmv of hydrochloric acid(HCl) and hydrofluoric acid(HF) at maximum and it is turned over to the gas treatment system for removing toxic gases out of the syngas to comply with the conditions requested from the gas turbine. The result of this study will be utilized to the detailed engineering, procurement and manufacturing of equipments, and construction for the Taean IGCC plant and furthermore it is the baseline technology applicable for the poly-generation such as coal gasification(SNG) and liquefaction(CTL) to reinforce national energy security and create new business models.

  • PDF

Dynamic Modeling of Gasification Reactions in Entrained Coal Gasifier (석탄 가스화 반응의 동적 거동 전산 모사)

  • Chi, Jun-Hwa;Oh, Min;Kim, Si-Moon;Kim, Mi-Young;Lee, Joong-Won;Kim, Ui-Sik
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.3
    • /
    • pp.386-401
    • /
    • 2011
  • Mathematical models for various steps in coal gasification reactions were developed and applied to investigate the effects of operation parameters on dynamic behavior of gasification process. Chemical reactions considered in these models were pyrolysis, volatile combustion, water shift reaction, steam-methane reformation, and char gasification. Kinetics of heterogeneous reactions between char and gaseous agents was based on Random pore model. Momentum balance and Stokes' law were used to estimate the residence time of solid particles (char) in an up-flow reactor. The effects of operation parameters on syngas composition, reaction temperature, carbon conversion were verified. Parameters considered here for this purpose were $O_2$-to-coal mass ratio, pressure of reactor, composition of coal, diameter of char particle. On the basis of these parametric studies some quantitative parameter-response relationships were established from both dynamic and steady-state point of view. Without depending on steady state approximation, the present model can describe both transient and long-time limit behavior of the gasification system and accordingly serve as a proto-type dynamic simulator of coal gasification process. Incorporation of heat transfer through heterogenous boundaries, slag formation and steam generation is under progress and additional refinement of mathematical models to reflect the actual design of commercial gasifiers will be made in the near futureK.

Gasification Study of Datong Coal in a Bench Scale Unit of Entrained Flow Gasifier (Datong탄에 대한 Bench Scale Unit급 분류층 석탄가스화 연구)

  • Ryu, Si-Ok;Kim, Jae-Ho;Lee, Hyo-Jin;Lee, Jae-Goo;Park, Tae-Jun;An, Dal-Hong;Park, Ho-Young
    • Journal of Energy Engineering
    • /
    • v.6 no.1
    • /
    • pp.96-103
    • /
    • 1997
  • Coal gasification experiments were performed to characterize the bench scaled unit of 0.5∼1.0 T/D entrained coal gasifier developed by KIER. Datong coal from China was selected for this study. The system was operated at the temperature range of 1300∼1550$^{\circ}C$, with 62.5% of coal water mixture on the basis of dry coal. Oxygen and slurry mixture were preheated prior to feeding into burner and the ratio of oxygen/coal was in the range of 0.8∼1.2. In the preparation of coal water mixture, 0.3 wt% of CWM1002 and 0.05 wt% of NaOH wire added to reduce viscosity as well as to enhance theological properties of slurry. The resultant gaseous products consist primarily of hydrogen, carbon monoxide, carbon dioxide, and minor amounts of methane. Formation of H$_2$and CO was increased, while CO$_2$was decreased as the reacting temperature being increased due to the char-CO$_2$reaction. Maximum production of H$_2$and CO occurred in the O$_2$/coal ratio of 0.9 at 1530$^{\circ}C$. Heating values of product gases were in the range of 1700∼2400 kcal/N㎥.

  • PDF

Experimental Study on the Characteristics of Coal Gasification by 1 T/D BSU Coal-Slurry Entrained Gasifier (1 T/D급 습식 분류상 석탄가스화기에서의 석탄가스화 특성연구)

  • 박태준;김재호;손성근;이재구;홍재창;김용구;최영찬
    • Journal of Energy Engineering
    • /
    • v.8 no.4
    • /
    • pp.553-559
    • /
    • 1999
  • This study has been implemented to investigate various characteristics of coals which are imported from abroad. KIER has developed 1 T/D bench-scale unit, entrained-flow coal-slurry gasification technology to investigate the followings: 1) to assess the appropriate foreign coals for gasification. 2) to establish the data base for gasification phenomena, 3) to minimize the technical risks prior to introduction of commercial scaled IGCC power plant, 4) to develop essential key technologies and to establish operational experiences for coal gasification. The foreign coals used in the gasification are Cyprus and Alaska coals from U. S. A. Cyprus coal(bituminous) and Alaska coal (lignite) were shown about 1.29$0^{\circ}C$. The concentrations of coal-slurry for Cyprus were maintained up to 58%, 62% and 65% in order to enable to feed satisfactorily it into the gasifier without any other problems at feeding systems. However, the Alaska coal was unable to maintain slurry concentration over the 60% due to its high viscosity. During the experiments, $O_2/coal$ ratios in both coals ere maintained from 0.6~1.2, but especially Alaska coal was required excessive oxygen feed due to its high ingerent moisture contents. During the experiments with two different coals, the concentrations of syngas $(H_2+CO)$ were shown as 40~62%, and the heating value of syngas were detected as 1,400~2,050 kcal/N㎥

  • PDF