• 제목/요약/키워드: Entrained Coal Gasification

검색결과 51건 처리시간 0.02초

분류층 습식 석탄가스화 기술 (Entrained-Flow Coal Water Slurry Gasification)

  • 라호원;이시훈;윤상준;최영찬;김재호;이재구
    • Korean Chemical Engineering Research
    • /
    • 제48권2호
    • /
    • pp.129-139
    • /
    • 2010
  • 석탄으로부터 수소, 일산화탄소 등의 가스 연료를 생산하기 위하여 개발된 석탄 가스화 공정은 이산화탄소 저장, 환경 유해 물질 저감 등의 우수성으로 인하여 최근 세계 각국에서 앞다투어 개발에 나서고 있다. $75{\mu}m$ 이하의 미분탄을 이용하는 분류층 가스화 공정은 용량의 대형화가 쉽고, 에너지 전환 효율이 우수하여 석탄가스화복합발전(IGCC) 등에 널리 이용되고 있다. 특히 석탄슬러리를 원료로 사용하는 습식 분류층 가스화 공정은 기술적으로 성숙되어 가장 많이 보급되고 있다. 본 논문에서는 습식 분류층 가스화 공정을 이루는 석탄전처리, 버너, 가스화기, 슬래그용융, 가스화 운전 특성과 설계 및 해석을 위한 수치모사 등의 요소기술 개발 현황을 고찰하였다. 습식 석탄가스화는 IGCC 플랜트에서 뿐만 아니라 합성석유, SNG, 화학원료 제조용으로 활용될 수 있으며 융합 공정, 연료 다변화 등에 대응하기 위하여 요소기술별 추가적인 기술개발이 이루어져야 할 것으로 판단된다.

Numerical and experimental study for Datong coal gasification in entrained flow coal gasifier

  • Park, Y. C.;Park, T. J.;Kim, J. H.;Lee, J. G.
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 2001년도 추계 학술발표회 논문집
    • /
    • pp.69-76
    • /
    • 2001
  • The coal gasification process of a slurry feed type, entrained-flow coal gasifier was numerically predicted in this paper. By divding the complicated coal gasification process into several simplified stages suh as slurry evaporation, coal devolitilisation and two-phase reactions coupled with turbulent flow and two-phase heat transfer, a comprehensive numerical model was constructed to simulate the coal gasification process. The k-$\varepsilon$turbulence model was used for the gas phase flow while the Random-trajectory model was applied to describe the behavior of the coal slurry particles. The unreacted-core shrinking model and modified Eddy Break-Up(EBU) model were used to simulate the heterogeneous and homogeneous reactions, respectively. The simulation results obtained the detailed informations about the flow field, temperature inside the gasifier. Meanwhile, the simulation results were compared with the experimental data as function of $O_2$/coal ratio. It illustrated that the calculated carbon conversions agreed with the measured ones and that the measurd quality of the atngas was better than the calculated one when the $O_2$/coal ratio increases. The result was related with the total heat loss through the gasifier and uncertain kinetics for the heterogeneous reactions.

  • PDF

분류층 가스화 장치를 이용한 석탄 가스화 특성 연구 (Gasification characteristics of coal in an entrained-flow gasifier)

  • 라호원;서명원;윤상준;윤성민;가명훈;이해룡;이재구
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.265-266
    • /
    • 2014
  • Due to global economic growth, there is an increasing need for energy. Fossil fuels will continue to dominate the world energy supplies in the 21st century and coal will play a significant role. Since coal is one of the most important fossil fuels in the world, coal gasification technology appears to be an inevitable choice for power and chemicals production and has a leading place in Clean Coal Technology (CCT). The most eminent environmental advantage of coal gasification lies in its inherent reaction features that produce negligible sulfur and nitrogen oxides, as well as other pollutants in a reducing atmosphere. The gasifier was operated for a throughput of 1.0 ton & 10.0ton coal per day at pressures of 1~20Bar. Gasification was conducted in a temperature range of $1,100{\sim}1,450^{\circ}C$.

  • PDF

분류층 건식 석탄가스화기에서의 가스화 특성 (Gasification characteristics in an entrained flow coal gasifier)

  • 유영돈;윤용승;안달홍;박호영
    • 대한기계학회논문집B
    • /
    • 제21권12호
    • /
    • pp.1690-1700
    • /
    • 1997
  • Entrained coal gasification tests with Datong coal were performed to assess the influence of oxygen/coal ration and pressure. When gasification condition in oxygen/coal ratio has changed from 0.5 to 1.0, optimal gasification condition from low pressure runs was oxygen/coal ratio of approximately 0.9 where CO was produced about 40% and H, about 20%. Under the pressure condition of 12-14 atmospheres, optimal oxygen/coal ratio value was in the region of 0.6 where CO was produced about 55% and H2about 25%. From these results, it was found that the oxygen/ coal ratio for the maximum production of CO and H, was decreasing with the increase in gasifier pressure and also, with increasing oxygen content, carbon conversion was increased. For the Chinese Datong coal, cold gas efficiency was in the range of 40-80%.

CPD 모델을 활용한 석탄 가스화 과정 중 탄종에 따른 휘발분 배출에 관한 이론해석연구 (A Theoretical Analysis on Volatile Matter Release from Different Coals Using CPD Model During a Coal Gasification)

  • 김량균;이병화;전충환;장영준;송주헌
    • 대한기계학회논문집B
    • /
    • 제33권12호
    • /
    • pp.1000-1006
    • /
    • 2009
  • Integrated Coal Gasification Combined Cycle (IGCC) power plants have been developed to reduce carbon dioxide emissions and to increase the efficiency of electricity generation. A devolatilization process of entrained coal gasification is predicted by CPD model which could describe the devolatilization behavior of rapidly heated coal based on the chemical structure of the coal. This paper is intended to compare the mass release behavior of char, tar and gas(CO, $CO_2,\;H_2O,\;CH_4$) for three different coals. The influence of coal structure on gas evolution is examined over the pressure range of 10${\sim}$30atm.

고압 석탄 분류층 가스화기 전산유동에서 탈휘발 모델의 영향 평가 (Evaluation of devolatilization models in CFD for high-pressure entrained flow coal gasifier)

  • 예인수;박상빈;류창국;박호영;김봉근
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.37-40
    • /
    • 2012
  • In an entrained flow coal gasifier, predicting the reaction behavior of pulverized coal particles requires detailed information on devolatilization, char gasification, gaseous reactions, turbulence and heat transfer. Among the input parameters, the rate of devolatilization and the composition of volatile species are difficult to determine by experiments due to a high pressure (~40 bar) and temperature (${\sim}1500^{\circ}C$). This study investigates the effect of devolatilization models on the reaction and heat transfer characteristics of a 300 MWe Shell coal gasifier. A simplified devolatilization model and advanced model based on Flashchain were evaluated, which had different volatiles composition and devolatilization rates. It was found that the tested models produce similar flow and reaction trends, but the simplified model slightly over-predict the temperature and wall heat flux near the coal inlets.

  • PDF

2단 분류층 가스화기에서 합성가스 생성을 위한 석탄 슬러리 가스화에 대한 수치 해석적 연구 (Numerical simulation of gasification of coal-water slurry for production of synthesis gas in a two stage entrained gasifier)

  • 서동균;이선기;송순호;황정호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.417-423
    • /
    • 2007
  • Oxy-gasification or oxygen-blown gasification, enables a clean and efficient use of coal and opens a promising way to CO2 capture. The coal gasification process of a slurry feed type, entrained-flow coal gasifier was numerically predicted in this paper. The purposes of this study are to develop an evaluation technique for design and performance optimization of coal gasifiers using a numerical simulation technique, and to confirm the validity of the model. By dividing the complicated coal gasification process into several simplified stages such as slurry evaporation, coal devolatilization, mixture fraction model and two-phase reactions coupled with turbulent flow and two-phase heat transfer, a comprehensive numerical model was constructed to simulate the coal gasification process. The influence of turbulence on the gas properties was taken into account by the PDF (Probability Density Function) model. A numerical simulation with the coal gasification model is performed on the Conoco-Philips type gasifier for IGCC plant. Gas temperature distribution and product gas composition are also presented. Numerical computations were performed to assess the effect of variation in oxygen to coal ratio and steam to coal ratio on reactive flow field. The concentration of major products, CO and H2 were calculated with varying oxygen to coal ratio (0.2-1.5) and steam to coal ratio(0.3-0.7). To verify the validity of predictions, predicted values of CO and H2 concentrations at the exit of the gasifier were compared with previous work of the same geometry and operating points. Predictions showed that the CO and H2 concentration increased gradually to its maximum value with increasing oxygen-coal and hydrogen-coal ratio and decreased. When the oxygen-coal ratio was between 0.8 and 1.2, and the steam-coal ratio was between 0.4 and 0.5, high values of CO and H2 were obtained. This study also deals with the comparison of CFD (Computational Flow Dynamics) and STATNJAN results which consider the objective gasifier as chemical equilibrium to know the effect of flow on objective gasifier compared to equilibrium. This study makes objective gasifier divided into a few ranges to study the evolution of the gasification locally. By this method, we can find that there are characteristics in the each scope divided.

  • PDF

고속충돌노즐을 이용한 분류층 가스화기내의 유동특성에 관한 연구 (Study on flow characteristics in entrained flow gasifier with high speed impinging jet)

  • 이효진;박태준;이재구;김재호;안달홍
    • 대한기계학회논문집B
    • /
    • 제20권5호
    • /
    • pp.1735-1742
    • /
    • 1996
  • An entrained flow gasifier simulating the cold mode was tested to estimate its performance for coal gasification and flow characteristics with a developed high speed impinging jet nozzle. The burner was designed for high temperature and high pressure(HTHP) conditions, especially for IGCC(Integrated Coal Gasification Combined Cycle). In order to get proper size of droplets for high viscous liquid such as coal slurry, atomization was achieved by impacting slurry with high speed (over 150m/sec) secondary gas (oxygen/or air)/ Formed water droplets were ranged between 100.mu.m to 20.mu.m in their sizes. The flow characteristics in the gasifier was well understood in mixing between fuel and oxidizer. Both external and internal recirculation zones were closely investigated through experimentation with visualization and numerical solutions from FLUENT CODE.

200 t/d급 MHI 석탄 가스화기의 석탄 및 공기 배분에 따른 가스화 특성 평가 (Influence of coal and air flow rate distribution on gasification characteristics in 200 t/d scale MHI coal gasifier)

  • 도윤영;예인수;김봉근;류창국
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2015년도 제51회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.93-96
    • /
    • 2015
  • Commercial coal gasifiers typically use entrained flow type reactors, but have unique features in terms of reactor shape, gasifying agent, coal feeding type, ash/slag discharge, and reaction stages. The MHI gasifier is characterized as air-blow dry-feed entrained reactor, which incorporates a short combustion stage at the bottom and a tall gasification stage above. This study investigates the flow and reaction characteristics inside a MHI gasifier by using computational fluid dynamics (CFD) in order to understand its design and operation features. For its pilot-scale system at 200 ton/day capacity, the distribution of coal and air supply between the two reaction stages was varied. It was found that the syngas composition and carbon conversion rate were not significantly influenced by the changes in the distribution of coal and air supply. However, the temperature, velocity and flow pattern changed sensitively to the changes in the distribution of coal and air supply. The results suggest that one key factor to determine the operational ranges of coal and air supply would be the temperature and flow pattern along the narrower wall between the two reaction stages.

  • PDF

300MW급 Shell형 1단 분류층 석탄 가스화기의 전산수치해석 : 산소/스팀/석탄 주입비, 석탄입자 크기, 주입 노즐 각도가 가스화기 성능에 미치는 영향 (CFD Modeling for 300MW Shell-Type One-Stage Entrained Flow Coal Gasifier : Effect of $O_2$/Steam/Coal Ratios, Coal Particle Sizes, and Inlet Angles on the Gasifier Performance)

  • 송지훈;강민웅;서동균;임성진;백민수;황정호
    • 한국수소및신에너지학회논문집
    • /
    • 제21권3호
    • /
    • pp.227-240
    • /
    • 2010
  • Coal gasification is heading for a great future as one of the cleanest energy sources, which can produce not only electricity and heat, but also gaseous and liquid fuels from the synthesis. The work focuses on 300MW shell type one-stage entrained flow coal gasifier which is used in the Integrated coal Gasification Combined Cycle(IGCC) plant as a reactor. As constructing an IGCC plant is considerably complicated and expensive compared with a pulverized-coal power plant, it is important to determine optimum design factors and operating conditions using a computational fluid dynamics (CFD) model. In this study, the results of numerical calculations show that $O_2$/Coal ratio, 0.83, Steam/Coal ratio, 0.05, coal particle diameter, $100{\mu}m$, injection angle, $4^{\circ}$ (clockwise) are the most optimum in this research.