• Title/Summary/Keyword: Enthalpy of vaporization

Search Result 12, Processing Time 0.023 seconds

Performance Comparison of Four-Parameter Correlation Equations of the Enthalpy of Vaporization

  • Lee, Kyoung-Youl;Park, Kyoung-Kuhn
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.3
    • /
    • pp.118-123
    • /
    • 2006
  • A few commonly used correlation equations of the enthalpy of vaporization essential to the analysis of refrigeration cycles are reviewed. A new four-parameter correlation equation is proposed assuming that the enthalpy of vaporization could be represented with a linear form of the temperature and an additional function which slowly decreases as the temperature increases. It is not a common practice to measure the enthalpy of vaporization by experiment; therefore, performance of the new correlation is examined using numeric data from the ASHRAE tables for 22 pure substance refrigerants. The new correlation equation and other existing ones are fitted to the data optimizing the root mean squared deviation. All data points are weighted equally and NBP (normal boiling point) is used as a fixed point since the NBP is important for refrigeration application. The new four-parameter equation yields an average absolute deviation of 0.05% for 22 refrigerants which is smaller than those of other four-parameter equations, such as Guermouche-Vergnaud (0.08%), Aerebrot (0.13%), Radoz-Lyderson (0.08%), and Somayajulu four-parameter equation (0.08%).

Comparative Study on the Performance of Correlations of the Enthalpy of Vaporization for Pure Substance Refrigerants

  • Park Kyoung Kuhn
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.4
    • /
    • pp.214-219
    • /
    • 2004
  • A few commonly used correlation equations of the enthalpy of vaporization are reviewed and a new three-parameter correlation equation is proposed. Performance of the pro­posed equation is examined using the data listed in the ASHRAE table for 22 pure substance refrigerants. The new equation yields an average absolute deviation of $0.14\%$ for 22 refrig­erants, which is better than those of other equations, such as Xiang $(0.18\%),$ Majer-Svoboda­Pick $(0.18\%),$ and Somayajulu equation $(0.23\%)$.

Comparative Study on the Performance of Correlations of the Enthalpy of Vaporization for Pure Substance Refrigerants (순수물질 냉매에 대한 증발 엔탈피 상관식의 성능비교 연구)

  • 박경근
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.8
    • /
    • pp.704-709
    • /
    • 2003
  • A few commonly used correlation equations of the enthalpy of vaporization are reviewed and a new three-parameter correlation equation is proposed. Performance of the proposed equation is examined using the data listed in the ASHRAE table for 22 pure substance refrigerants. The new equation yields an average absolute deviation of 0.14% for 22 refrigerants, which is better than those of other equations, such as Xiang (0.18%), Major-Svoboda-Pick (0.18%), and Somayajulu equation (0.23%).

A Proposal of a Correlation of the Enthalpy of Vaporization for Pure Substances and Performance Comparison of Correlations (순수물질에 대한 증발엔탈피 상관식의 제안 및 성능비교)

  • Lee, Kyoung-Youl;Park, Kyoung-Kuhn
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1185-1191
    • /
    • 2005
  • Published correlation equations of the enthalpy of vaporization are reviewed and a new four-parameter correlation equation is proposed. Performance of the proposed equation is examined using the ASHRAE data for 22 pure substance refrigerants as reference data. The new equation yields an average absolute deviation of $0.05\%$, which is smaller than those of published equations, such as equations of Guermouche-Vergnaund $(0.08\%)$, Aerebrot $(0.13\%)$, Radoz-Lydersen $(0.08\%)$, and Somayajulu $(0.08\%)$. The three adjustable parameters of the modified correlation are optimized and reported for 22 substances. The equation proposed in this work is valid over the entire temperature range where data points exist.

A new correlation of the enthalpy of vaporization for pure refrigerants (순수물질 냉매에 대한 증발엔탈피의 새로운 상관식)

  • 박경근
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.4
    • /
    • pp.449-455
    • /
    • 1998
  • A header' is the device that makes uniform flow distribution in all branches from header of heat exchangers, pipe burner or chemical equipments. In this study, experimental tests have been performed in order to investigate the flow distribution characteristics in a straight header and tapered header which have 6 and 11 glass pipe branches. The experimental equipment consists of a water circulation system where the fluid velocity in each glass pipe is measured by Ar-ion LDV system. From the experiments and the theoretical equation, it could be recommended that tapered header should be determined so that its internal velocities inside the header become uniform according to taper of the header and number of attached branches for uniform flow distribution in energy systems.

  • PDF

The Heat Management of PEM Fuel Cell Stack (운전 조건에 따른 PEMFC 스택 열 관리)

  • Son, Ik-Jae;Lee, Jong-Hyun;Nam, Gi-Young;Ko, Jae-Jun;Ahn, Byung-Ki
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.3
    • /
    • pp.184-192
    • /
    • 2010
  • PEM fuel cell produces electric power, water and heat by the electrochemical reaction of hydrogen and oxygen. The heating value is dependent on the molar enthalpy of vaporization of product water and the performance loss. In this paper, the heating value of fuel cell stack has been studied under various stack operating temperatures to achieve more efficient heat management. A technology using the molar enthalpy of vaporization of product water is suggested to reduce heat-up time during start-up of a fuel cell vehicle.

Sensitivity of EOS in Analyzing the High-Pressure Vaporization Characteristics (고압 상태의 증발 특성 해석결과에 미치는 상태방정식의 영향)

  • You, Y.W.;Kim, Y.M.
    • Journal of ILASS-Korea
    • /
    • v.2 no.3
    • /
    • pp.32-43
    • /
    • 1997
  • A comparison of predicted molar volume, vapor - liquid equilibrium, enthalpy of vaporization, droplet size history. and vaporization rates with several forms of equation of state has been made. The equation of state (EOS) investigated in this study includes the EOS given by Redlich - Kwong, the Soave - Redlich - Kwong, and the Peng - Robinson. Numerical results indicate that the Peng - Robinson EOS yields more accurate predictions of vapor - liquid equilibrium under a broader range of temperature and pressure conditions, especially at high pressures and near the critical point.

  • PDF

Numerical simlation of nanosecond pulsed laser ablation in air (대기중 나노초 펄스레이저 어블레이션의 수치계산)

  • 오부국;김동식
    • Laser Solutions
    • /
    • v.6 no.3
    • /
    • pp.37-45
    • /
    • 2003
  • Pulsed laser ablation is important in a variety of engineering applications involving precise removal of materials in laser micromachining and laser treatment of bio-materials. Particularly, detailed numerical simulation of complex laser ablation phenomena in air, taking the interaction between ablation plume and air into account, is required for many practical applications. In this paper, high-power pulsed laser ablation under atmospheric pressure is studied with emphasis on the vaporization model, especially recondensation ratio over the Knudsen layer. Furthermore, parametric studies are carried out to analyze the effect of laser fluence and background pressure on surface ablation and the dynamics of ablation plume. In the numerical calculation, the temperature, pressure, density, and vaporization flux on a solid substrate are obtained by a heat-transfer computation code based on the enthalpy method. The plume dynamics is calculated considering the effect of mass diffusion into the ambient air and plasma shielding. To verify the computation results, experiments for measuring the propagation of a laser induced shock wave are conducted as well.

  • PDF

Influence of Critical Point of Jet Injected into Near-Critical Environment on Phase Change (근임계 환경으로 분사되는 제트의 임계점이 상변화에 미치는 영향)

  • Yoon, Taekyung;Shin, Dongsoo;Son, Min;Shin, Bongchul;Koo, Jaye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.475-481
    • /
    • 2017
  • In this paper, high speed camera images were used to analyze the supercritical injection behavior of liquid hydrocarbon compounds used as main components of propellant fuel. Decane and Methylcyclohexane (MCH), which have different critical points among kerosene constituents, were selected as experimental fluid and Shadowgraphy technique was used for the analysis. The difference in the temperature variation from the initial injector state of the subcritical condition until the vaporization occurs was represented by the different behaviors of Decane and MCH. However, under the Supercritical conditions, the enthalpy of vaporization near the critical point approaches zero and the phase change to the Supercritical phase occurs instead of vaporization process. In the phase change of the Supercritical system, there was no rapid density change, so the liquid state image was observed in both the Decane and MCH.

  • PDF

Numerical computation of pulsed laser ablation phenomena by thermal mechanisms (열적 메커니즘에 의한 펄스레이저 어블레이션 현상의 수치계산)

  • Oh, Bu-Kuk;Kim, Dong-Sik
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1572-1577
    • /
    • 2003
  • High-power pulsed laser ablation under atmospheric pressure is studied utilizing numerical and experimental methods with emphasis on recondensation ratio, and the dynamics of the laser induced vapor flow. In the numerical calculation, the temperature pressure, density and vaporization flux on a solid substrate are first obtained by a heat-transfer computation code based on the enthalpy method, and then the plume dynamics is calculated by using a commercial CFD package. To confirm the computation results, the probe beam deflection technique was utilized for measuring the propagation of a laser induced shock wave. Discontinuities of properties and velocity over the Knudsen layer were investigated. Related with the analysis of the jump condition, the effect of the recondesation ratio on the plume dynamics was examined by comparing the pressure, density, and mass fraction of ablated aluminum vapor. To consider the effect of mass transfer between the ablation plume and air, unlike the most previous investigations, the equation of species conservation is simultaneously solved with the Euler equations. Therefore the numerical model computes not only the propagation of the shock front but also the distribution of the aluminum vapor. To our knowledge, this is the first work that employed a commercial CFD code in the calculation of pulsed ablation phenomena.

  • PDF