• Title/Summary/Keyword: Enthalpy of Formation

Search Result 107, Processing Time 0.024 seconds

Interconversion of Electronic Spin State of p-Substituted Arylketocarbene Reactions

  • Sung, Dae-Dong;Jeong, Jin-Hee;Ryu, Zoon-Ha;Chin, Won-Bae;Lee, Ik-Choon
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.8
    • /
    • pp.1231-1237
    • /
    • 2004
  • Rate constants for photolytic reactions of p-substituted 2-diazopropiophenones were determined in acetonitrile. The reactions show a comparatively low value of activation energy and activation enthalpy to alkylcarbenes or other arylcarbenes. The transition state corresponds to the step of a new carbonyl bond formation. The high negative ρ -values are shown in Hammett plots. The kinetics results and EPR spectrum are in accord with a phenomenon that occurs in interconversion between singlet and triplet carbenes.

A Study on the Electrochemical and Thermodynamic Properties of Hydrogen Absorbing Alloys (수소저장합금의 전기화학 및 열역학적 특성에 관한 연구)

  • Park, Chan-Kyo;Cho, Tae-Hwan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.5 no.2
    • /
    • pp.65-71
    • /
    • 1994
  • Electrochemical and thermodynamic properties of $MmNi_5$ and the related alloys for nickel-metal hydride battery(Ni-MH) were studied in terms of the equilibrium hydrogen pressure. $MmNi_5$ alloy with high equilibrium hydrogen pressure(10~20atm at room temperature), which is usually difficult to charge, was substituted for Al in part. Partial substitution of Al made not only the equilibrium pressure to be reduced remarkably, but also the enthalpy change depending on the formation of metal hydride to be agreed to the value in gas phase reaction and electrochemical reaction. Besides the composition of Al which can be given the maximum discharge capacity was turned out to be between the 0.5~1.0 atoms of Al.

  • PDF

Mechanistic Studies of the Solvolyses of Cyclohexanesulfonyl Chloride

  • Kang, Suk Jin;Koh, Han Joong
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.4
    • /
    • pp.233-236
    • /
    • 2019
  • In this study, the solvolysis of cyclohexanesulfonyl chloride (1) was studied by kinetics in ethanol-water, methanol-water, acetone-water, and 2,2,2-trifluoroethanol (TFE)-water binary solvent systems. The rate constants were applied to the extended Grunwald-Winstein equation, to obtain the values of m = 0.41 and l = 0.81. These values suggested $S_N2$ mechanism in which bond formation is more important than bond breaking in the transition state (TS). Relatively small activation enthalpy values (11.6 to $14.8kcal{\cdot}mol^{-1}$), the large negative activation entropy values (-29.7 to $-38.7cal{\cdot}mol^{-1}{\cdot}K^{-1}$) and the solvent kinetic isotope effects (SKIE, 2.29, 2.30), the solvolyses of the cyclohexanesulfonyl chloride (1) proceeds via the $S_N2$ mechanism.

Multi-Cellular Natural Convection in the Melt during Convection- Dominated Melting

  • Kim, Sin;Kim, Min-Chan
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.94-101
    • /
    • 2002
  • Convection-dominated melting in a rectangular cavity is analyzed numerically with particular attention to the multi-cellular flows in the melt. At the earlier stage of the melting, the melt region is quite similar to a cavity with high aspect rati71, where the multi-cellular natural convection appears. Numerical results show that the formation and evolution of the multiple flow cells in the melt region is approximately similar to t]tat of a single-phase flow in a tall cavity with the same aspect ratio; however, the continuous change of the melt region due to the melting affects the detailed process. Also, numerical aspects for the prediction of the detailed flow structure in the melt are discussed.

A Study on Complex Formation of Heavy Metal Ions with N,N'-Oxalybis(salicylaldehyde hydrazone) (N,N'-Oxalylbis(salicylaldehyde hydrazone)과 중금속이온과의 착물 형성에 관한 연구)

  • Kyu-Seong Choi;Ick-Hee Lee;Yong-Nam Kim
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.135-141
    • /
    • 1991
  • The complexation of N,N'-oxalylbis(salicylaldehyde hydrazone) (OBSH) with Zn (II), Cd (II), and Pb(II) ions was studied by polarographic method in DMSO solution. The order of stability constants was Cd(II) < Zn(II) < pb(II), and all heavy metal ions formed stable complex with OBSH ligand. The stability constants of complexation were measured at various temperatures. As the results, enthalpy and entropy changes of the complexation were distributed on the complex stabilities.

  • PDF

The Thermodynamic Study on the Micellization of Carboxybetaine Derivatives (카르복시베타인유도체(誘導體)의 미셀형성(形成)에 대한 열역학적(熱力學的) 연구(硏究))

  • Kim, Yong-In;Kim, Yu-Ok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.67-73
    • /
    • 1989
  • The adsorptions of 2-(dimethylalkylammonio)propanoates with straight chain alkyl group having from 12 to 16 carbon atoms on the liquid-air interface were decreased while lowering the surface tensions at critical micelle concentrations. In micellization, the standard free energy changes per methylene in alkyl group were found to make same contribution to the micelle formation of corresponding C-alkylcarboxybetaines, and the standard enthalpy and entropy changes were studied within the range of temperature from 30 to $50^{\circ}C$.

Effect of Sodium Stearoyl Lactylate on Complex Formation with Amylopectin and on Gelatinization and Retrogradation of Wheat Starch (Sodium Stearoyl Lactylate가 아밀로펙틴과의 결합물 형성 및 밀전분의 호화와 노화에 미치는 영향)

  • Jang, Jae-Kweon;Lee, Yun-Hyung;Lee, Seok-Hoon;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.500-506
    • /
    • 2000
  • The effects of sodium stearoyl lactylate(SSL) on the thermal properties of wheat starch and amylopectin, and the crystallinity properties of amylopectin were investigated using differential scanning calorimetry(DSC) and X-ray diffractometer. On the rescan(second heating), amylopectin produced the featureless thermogram shown at the second heating, and SSL alone melted at $40{\sim}55^{\circ}C$, while the mixture of amylopectin containing 8% water and SSL(10:1), presenting the evidence of AP-SSL complex, showed differentiate melting temperature(other crystallinity) from SSL alone. Also, the melting enthalpy of AP and SSL mixture by subsequent heating and cooling were continuously increased. Further, the mixtures of wheat starch: SSL (5:1, w/w) and amylopectin: SSL(5:1, w/w), indicated AP-SSL complex, showed the reversible melting peak at temperature range of $60{\sim}70^{\circ}C$ together with melting peak of SSL observed at temperature range of $40{\sim}55^{\circ}C$. AP-SSL complex in the X-ray diffraction, compared V-form of amylose-lipid complex, exhibited characteristic peaks($2{\theta}$, 5.57, 20.903, 23.227). The gelatinization enthalpy value of wheat starch in the presence of SSL, observed at temperature range of $50{\sim}70^{\circ}C$, was decreased at total water content 60%, whearas had no significant effect at total water content 40, 50%, and also, SSL increased melting enthalpy of amylose-lipid complex. The extent of AP and wheat starch retrogradation wasreduced significantly by SSL.

  • PDF

Effect of NaCl, n-Butanol, and Temperature on the Micellization of Ammonium Cationic Surfactants (DTAB, TTAB, and CTAB) in Aniline Solution (아닐린 수용액에서 암모늄형 양이온성계면활성제 (DTAB, TTAB, 및 CTAB)의 미셀화에 미치는 염, n-부탄올 및 온도의 효과)

  • Lee, Dong-Cheol;Lee, Byung-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.407-416
    • /
    • 2019
  • The criticical micelle concentration (CMC) was measured by using the UV-Vis method for the micellization of the ammonium type cationic surfactants (DTAB, TTAB, and CTAB) in the aqueous aniline solution. The enthalpy change (${\Delta}H^0$) and entropy change (${\Delta}S^0$) were calculated from the dependence of Gibbs free energy change (${\Delta}G^0$) on the temperature for micellization of the cationic surfactants between 290K and 314K. The effects of n-butanol and sodium chloride on the micellization of cationic surfactants were measured and compared with the other thermodynamic functions. All the free energy changes (${\Delta}G^0$) of the micellization were negative, all the enthalpy change (${\Delta}H^0$) were negative, and all the entropy change (${\Delta}S^0$) were positive values, respectively. The micelle formation of cationic surfactant in aniline solution is a spontaneous exothermic reaction, and the iso-structural temperature calculated from the thermodynamic values show that enthalpy and entropy contribution to the micellization are almost the same for the micellization of cationic surfactants

Influence of the Ceramide(III) and Cholesterol on the Structure of a Non-hydrous Phospholipid-based Lamellar Liquid Crystal : Structural and Thermal Transition Behaviors

  • Jeong, Tae-Hwa;Oh, Seong-Geun
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.6
    • /
    • pp.1021-1030
    • /
    • 2007
  • The effects of the creamide III (CER3) and cholesterol (CHOL) on the structure of a non-hydrous distearoyl phosphatidylcholine (DSPC)-based lamellar liquid crystal (LC) hydrated by only propylene glycol (PG) without water were investigated by differential scanning calorimetry (DSC), X-ray diffractions (XRDs), and polarized microscope (PM). As soon as CER3 was incorporated into the lamellar phase, the characteristic LPP was appeared as well as the characteristic SPP, and the formation of separated CER3 crystalline phase was observed depending upon the increase of CER3 content by XRDs. Also, by DSC, it was shown that the increase of CER3 made the monotectic thermal transition be changed to the eutectic thermal transition which indicates the formation of separated CER3 crystalline phases and the main transition temperatures (Tc1) to be gradually decreased and the enthalpy change (ΔH) to be linearly increased. Incorporating CHOL, the formation of LPP and SPP showed almost similar behaviors to CER3, but incorporating small amounts of CHOL showed the characteristic peaks of CHOL which meant the existence of crystalline CHOL phase due to the immiscibility of CHOL with DSPC swollen by PG differently from CER3, and increasing CHOL made the intensity of the 1st order diffraction for LPP weakened as well as the intensities of the characteristic diffractions for DSPC. Also, in the results of DSC, it showed more complex thermal behaviors having several Tc than CER3 due to its bulky chemical structure. In the present study, the inducement of CER3 and CHOL as other lipids present in human stratum corneum (SC) into a non-hydrous lamellar phase is discussed in terms of the influence on their structural and thermal transition.

Temperature-Dependent Hydrolysis Reactions of U(VI) Studied by TRLFS

  • Lee, J.Y.;Yun, J.I.
    • Journal of Nuclear Fuel Cycle and Waste Technology
    • /
    • v.1 no.1
    • /
    • pp.65-73
    • /
    • 2013
  • Temperature-dependent hydrolysis behaviors of aqueous U(VI) species were investigated with time-resolved laser fluorescence spectroscopy (TRLFS) in the temperature range from 15 to $75^{\circ}C$. The formation of four different U(VI) hydrolysis species was measured at pHs from 1 to 7. The predominant presence of $UO{_2}^{2+}$, $(UO_2)_2(OH){_2}^{2+}$, $(UO_2)_3(OH){_5}^+$, and $(UO_2)_3(OH){_7}^-$ species were identified based on the spectroscopic properties such as fluorescence wavelengths and fluorescence lifetimes. With an increasing temperature, a remarkable decrement in the fluorescence lifetime for all U(VI) hydrolysis species was observed, representing the dynamic quenching behavior. Furthermore, the increase in the fluorescence intensity of the further hydrolyzed U(VI) species was clearly observed at an elevated temperature, showing stronger hydrolysis reactions with increasing temperatures. The formation constants of the U(VI) hydrolysis species were calculated to be $log\;K{^0}_{2,2}=-4.0{\pm}0.6$ for $(UO_2)_2(OH){_2}^{2+}$, $log\;K{^0}_{3,5}=-15.0{\pm}0.3$ for $(UO_2)_3(OH){_5}^+$, and $log\;K{^0}_{3,7}=-27.7{\pm}0.7$ for $(UO_2)_3(OH){_7}^-$ at $25^{\circ}C$ and I = 0 M. The specific ion interaction theory (SIT) was applied for the extrapolation of the formation constants to infinitely diluted solution. The results of temperature-dependent hydrolysis behavior in terms of the U(VI) fluorescence were compared and validated with those obtained using computational methods (DQUANT and constant enthalpy equation). Both results matched well with each other. The reaction enthalpies and entropies that are vital for the computational methods were determined by a combination of the van't Hoff equation and the Gibbs free energy equation. The temperature-dependent hydrolysis reaction of the U(VI) species indicates the transition of a major U(VI) species by means of geothermal gradient and decay heat from the radioactive isotopes, representing the necessity of deeper consideration in the safety assessment of geologic repository.