• Title/Summary/Keyword: Enthalpy of Formation

Search Result 108, Processing Time 0.021 seconds

Determination of inclusion complex formation constants for the β-CD and [Cu(Dien)(sub-Py)]2+ ion by the spectrophotometric methods (분광 광도법에 의한 β-CD와 [Cu(Dien)(sub-Py)]2+이온간의 복합체 형성 상수 결정)

  • Kim, Chang Suk;Oh, Ju Young
    • Analytical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.406-412
    • /
    • 2007
  • The formation of inclusion complexes between ${\beta}$-cyclodextrin and diethylenetriamine substituted-pyridine copper(II) perchlorate; [Cu(dien)(sub-py)] $(ClO_4)_2$, were studied by spectrophotometric methods. On account of charge-transfer band(MLCT) and $^2T_2{\rightarrow}^2E$, the two high peaks were observed as an inclusion complex for the [${\beta}$-CD]$[Cu(dien)(p-Cl-py)]^{2+}$ in the ultraviolet region of the spectrum. The ${\beta}$-CD and $[Cu(dien)(sub-py)]^{2+}$ ion formed a 1:1 complex, and the formation constants were decreased with the increasing temperatures, due to weak binding energy between ${\beta}$-CD and $[Cu(dien)(sub-py)]^{2+}$ ion. This reaction was controlled by enthalpy. In a correlation of the Hammett substituent constants and formation constants for the reaction, formation constants were increased by strong binding energy in the inclusion complexes when electron donating groups were substituted in pyridine ring.

The Study on the Physicochemical Properties of Fluid under High Pressure (1). Effects of Pressure and Temperature on the Pentamethyl Benzene-Iodine Charge Transfer Complex in n-HexaneⅠ

  • Kim, Jeong-Rim;Kwun, Oh-Cheun
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.2
    • /
    • pp.74-79
    • /
    • 1985
  • The stabilities of the charge transfer complexes of pentamethyl benzene with iodine in n-hexane have been investigated by UV-spectrophotometric measurements at 25, 40 and 60$^{\circ}C$ up to 1600 bars. The equilibrium constant of the complex formation was increased with pressure while being decreased with temperature raising. Changes of volume, enthalpy, free energy and entropy for the formation of the complexes were obtained from the equilibrium constants. The red-shift at higher pressure, the blue-shift at higher temperature, and the relation between pressure and oscillator strength have been discussed by means of thermodynamic functions. In comparison with the results in the previous studies, the absolute values of ${\Delta}$V at each temperature were increased with the number of methyl groups of polymethyl benzene. However, it can be seen that both ${\Delta}$H and ${\Delta}$S show extreme behaviors in durene near atmospheric pressure but they are negatively increased with the number of methyl groups near 1600 bar. This order of the thermodynamic parameters may be a measure of the relative basicities of polymethyl benzenes toward iodine under each pressure, and these phenomena are explained in terms of a positive inductive effect and a steric hindrance effect of the polymethyl benzene molecule.

The Effect of Pressure and Temperature on the Benzene-Iodine Charge Transfer Complex in n-Hexane (벤젠과 요오드 사이의 전하이동착물에 대한 압력과 온도의 영향)

  • Oh Cheun Kwun;Jeong Rim Kim
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.102-110
    • /
    • 1983
  • The effect of pressure and temperature on the stabilities of the benzene-iodine charge transfer complex have been investigated through ultraviolet spectrophotometric measurements in n-hexane. The stabilities of the complexes were measured at temperatures of 25, 40 and $60^{\circ}C$ up to 1600 bars. The equilibrium constant of the complex formation was increased with pressure and decreased with temperature raising. The absorption coefficient was increased with both pressure and temperature. Changes of volume, enthalpy, free energy and entropy for the formation of complexes were obtained from the equilibrium constants. The red-shift at a higher pressure, the blue-shift at a higher temperature and the relation between pressure and oscillator strength were discussed by means of thermodynamic functions.

  • PDF

The Effect of Pressures on the Formation of Charge Transfer Complexes of Toluene with Iodine (I) (톨루엔과 요오드 사이의 전하이동착물에 대한 압력의 영향 (I))

  • Kwun Oh Cheun
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.2
    • /
    • pp.73-84
    • /
    • 1975
  • The effect of pressures and temperatures on the stabilities of the toluene-iodine charge transfer complex have been investigated through ultraviolet spectrophotometric measurements in n-hexane. The stabilities of complexes were measured at $25~60{\circ}C$ under 1~1,200 bars. The equilibrium constant of the complex was increased with pressure and decreased with temperature raising. The absorption coefficient was increased with both pressure and temperature. Changes of volume, enthalpy, free energy and entropy for the formation of complexes were obtained from the equilibrium constants. The red-shift observed a higher pressure, the blue-shift at a higher temperature and the relation between pressure and oscillator strength were discussed by means of thermodynamic functions.

  • PDF

PSR-Based Microstructural Modeling for Turbulent Combustion Processes and Pollutant Formation in Double Swirler Combustors

  • Kim, Yong-Mo;Kim, Seong-Ku;Kang, Sung-Mo;Sohn, Jeong-Lak
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.88-97
    • /
    • 2001
  • The present study numerically investigates the fuel-air mixing characteristics, flame structure, and pollutant emission inside a double-swirler combustor. A PSR(Perfectly Stirred Reactor) based microstructural model is employed to account for the effects of finite rate chemistry on the flame structure and NO formation. The turbulent combustion model is extended to nonadiabatic flame condition with radiation by introducing an enthalpy variable, and the radiative heat loss is calculated by a local, geometry-independent model. The effects of turbulent fluctuation are taken into account by the joint assumed PDFs. Numerical model is based on the non-orthogonal body-fitted coordinate system and the pressure/velocity coupling is handled by PISO algorithm in context with the finite volume formulation. The present PSR-based turbulent combustion model has been applied to analyze the highly intense turbulent nonpremixed flame field in the double swirler combustor. The detailed discussions were made for the flow structure, combustion effects on flow structure, flame structure, and emission characteristics in the highly intense turbulent swirling flame of the double swirler burner.

  • PDF

A Study on the Two-Dimensional Phase Change Problem in a Rectangular Mold with Air-Gap Resistance to Heat Flow (공기층 저항을 고려한 사각형 주형내에서의 2차원 상변화문제에 관한 연구)

  • 여문수;손병진;김우승
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1205-1215
    • /
    • 1992
  • The solidification rate is of special importance in determining the casting structures and properties. The heat transfer characteristics at the interface between the mold and the casting is one of the major factors that control the solidification rate. The thermal resistance exists due to the air-gap formation at the mold/casting interface during the freezing process. In this study two-dimensional Stefan problem with air-gap resistance in the rectangular mold is considered and the heat transfer characteristics is numerically examined by using the enthalpy method. The effects of the major parameters, such as mold geometry, thermal conductivity, heat transfer coefficient, and initial temperature of casting, on the thermal characteristics are investigated.

Structural and Thermal Characteristics of Synthesized SiC by Carbothermal Reaction and Sol-gel Method (Carbothermal 반응법과 졸-겔법에 의해 합성된 SiC의 구조적 특성과 열역학적 특성)

  • Oh, Won-Chun;Kim, Bum-Soo
    • Analytical Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.156-160
    • /
    • 1998
  • SiC is synthesized by sol-gel and carbothermal reaction method from various carbon sources and Si source and characterized through the results of DSC and XRD. More SiC has been formed in carbothermal reaction than sol-gel method. From the XRD results, the degree of formation of SiC increases in the order of petroleum cokes, activated carbon, artificial graphite all in two introduced methods. Based on the DSC data, the enthalpy values for the exothermic reaction decrease in the order of activated carbon, petroleum cokes, artificial graphite in carbothermal reaction methods, while those for the endothermic reactions increase in the reverse order. But, the enthalpy values for the exothermic reactions decrease in the order of petroleum cokes, activated carbon, artificial graphite in sol-gel methods.

  • PDF

Safety assessment of biological nanofood products via intelligent computer simulation

  • Zhao, Yunfeng;Zhang, Le
    • Advances in nano research
    • /
    • v.13 no.2
    • /
    • pp.121-134
    • /
    • 2022
  • Emerge of nanotechnology impacts all aspects of humans' life. One of important aspects of the nanotechnology and nanoparticles (NPs) is in the food production industry. The safety of such foods is not well recognized and producing safe foods using nanoparticles involves delicate experiments. In this study, we aim to incorporate intelligent computer simulation in predicting safety degree of nanofoods. In this regard, the safety concerns on the nano-foods are addressed considering cytotoxicity levels in metal oxides nanoparticles using adaptive neuro-fuzzy inference system (ANFIS) and response surface method (RSM). Three descriptors including chemical bond length, lattice energy and enthalpy of formation gaseous cation of 15 selected NPs are examined to find their influence on the cytotoxicity of NPs. The most effective descriptor is selected using RSM method and dependency of the toxicity of these NPs on the descriptors are presented in 2D and 3D graphs obtained using ANFIS technique. A comprehensive parameters study is conducted to observe effects of different descriptors on cytotoxicity of NPs. The results indicated that combinations of descriptors have the most effects on the cytotoxicity.

Chromatographic Separation of Some Phenol Derivatives Using $\alpha$-Cyclodextrin in Mobile Phase ($\alpha$-씨클로덱스트린을 이동상으로 사용한 몇 가지 페놀 유도체들의 크로마토그래피적 분리)

  • 문영자;김봉희
    • Environmental Analysis Health and Toxicology
    • /
    • v.12 no.3_4
    • /
    • pp.75-84
    • /
    • 1997
  • Chromatographic retention behavior and separation of various phenol derivatives on a Partisil 10 ODS 3 column-with mobile phase containing $\alpha$-cyclodextrin-were systematically studied. The decrease in k' values caused by the addition of cyclodextrins in the mobile phase was based on the formation of an inclusion complex, resulting in weakening of the hydrophobic interaction between solutes and the stationary phase. The content of the organic solvent in the mobile phase also influenced k' values of the solutes, and k' values increased with a decrease of the content of organic solvent in the mobile phase. A simple equation has been derived that reveals the hyperbolic dependence of the capacity factor on the total concentration of cyclodextrin. A plot of the reciprocal of the capacity factor against (CD)$_T$ gives a straight line and the dissociation constant, K$_D$, of the inclusion complex can be calculated from the slope. The capacity factor decreased with increasing temperature. The enthalpy was calculated from the slope of van't Hoff plots. Under optimum conditions, some mixtures of phenol derivatives were able to separated successfully.

  • PDF

A Study of the Ionic Association of the Substituted N-Methyl Pyridinium Iodide (II), 4,N-Dimethyl Pyridinium Iodide in Ethanol-Water Mixture

  • Kwun, Oh-Cheun;Jee, Jong-Gi
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.1
    • /
    • pp.37-40
    • /
    • 1985
  • The electrical conductance and UV absorbance of 4,N-dimethyl Pridinium Iodide (NDMPI) were measured in the ethanol volume percentage, 95, 90, 80 and 60 of an ethanol-water mixture at 15, 25, 35 and $45^{\circ}C$. Ionic association constants(K) of NDMPI were evaluated in accordance with a combined method of conductance UV absorbance. The ion size parameter (${\gamma}_{\pm}$) and dipole momemt (${\mu}_{A+D-}$) of NDMPI were obtained from the values of K and dielectric constant. The ${\mu}_{A+D-}$- values were in good agreement with the values of transition moment(${\mu}_{mn}$) which is calculated form the UV peak values. The large negative values of the electrical enthalpy (${\Delta}H_{el}^{\circ}$) and entropy (${\Delta}H_{el}^{\circ}$ ) have proved that NDMPI had a positive hydration. The positive values of entropy (${\Delta}S^{\circ}$) means the formation of NDMPI ion goes with dehydration.