• Title/Summary/Keyword: Enthalpy exchanger

Search Result 56, Processing Time 0.032 seconds

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2016 (설비공학 분야의 최근 연구 동향 : 2016년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.6
    • /
    • pp.327-340
    • /
    • 2017
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2016. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of flow, heat and mass transfer, the reduction of pollutant exhaust gas, cooling and heating, the renewable energy system and the flow around buildings. CFD schemes were used more for all research areas. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results of the long-term performance variation of the plate-type enthalpy exchange element made of paper, design optimization of an extruded-type cooling structure for reducing the weight of LED street lights, and hot plate welding of thermoplastic elastomer packing. In the area of pool boiling and condensing, the heat transfer characteristics of a finned-tube heat exchanger in a PCM (phase change material) thermal energy storage system, influence of flow boiling heat transfer on fouling phenomenon in nanofluids, and PCM at the simultaneous charging and discharging condition were studied. In the area of industrial heat exchangers, one-dimensional flow network model and porous-media model, and R245fa in a plate-shell heat exchanger were studied. (3) Various studies were published in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, subjects include mobile cold storage heat exchanger, compressor reliability, indirect refrigeration system with $CO_2$ as secondary fluid, heat pump for fuel-cell vehicle, heat recovery from hybrid drier and heat exchangers with two-port and flat tubes. In the alternative refrigeration/energy system category, subjects include membrane module for dehumidification refrigeration, desiccant-assisted low-temperature drying, regenerative evaporative cooler and ejector-assisted multi-stage evaporation. In the system control category, subjects include multi-refrigeration system control, emergency cooling of data center and variable-speed compressor control. (4) In building mechanical system research fields, fifteenth studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, renewable energies, etc. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which could be help for improving the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the analyses of indoor thermal environments controlled by portable cooler, the effects of outdoor wind pressure in airflow at high-rise buildings, window air tightness related to the filling piece shapes, stack effect in core type's office building and the development of a movable drawer-type light shelf with adjustable depth of the reflector. The subjects of building energy were worked on the energy consumption analysis in office building, the prediction of exit air temperature of horizontal geothermal heat exchanger, LS-SVM based modeling of hot water supply load for district heating system, the energy saving effect of ERV system using night purge control method and the effect of strengthened insulation level to the building heating and cooling load.

An Application of Optimum Heat Exchanger for the Grasp on Performance Characteristics of $NH_3$ Refrigeration System

  • Ha Ok Nam;Kwon Il Wook;Hong Suck Ju;Kim Jae Yeol;Lee Jong In;Jeon Sang Sin;Ha Kyung Soo;Lee Seung Jae;Park Chan Soo;Jeong Song Tae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.2
    • /
    • pp.69-74
    • /
    • 2005
  • Since the use of CFC and HCFC refrigerants is to be restricted due to the depletion of ozone layer, this experiment applies the $NH_{3}$ gas to study the performance characteristics from the superheat control for improving the energy efficiency. The experiments are carried out for the condensing pressure of refrigeration system from 1500kPa to 1600kPa by 50kPa and for degree of superheat from $0^{circ}$ to $1^{circ}$ by $10^{circ}$ at each condensing pressure. As a result of experiment, 1) As degree of superheat increased, evaporating pressure of the compressor decreased so equilibrium temperature decreased. And specific volume of refrigerant vapors increased so refrigerant mass flow and heat load of the evaporator decreased. 2) An influence of change of condensing pressure on heat load of the evaporator was insignificant. 3) With the identical degree of superheat, change of compressed temperature was insignificant according to each condensing pressure, so there was little change in enthalpy.4) when the degree of superheat is $0^{circ}$C at each condensing pressure, the refrigeration system has the hi띤est performance.

Analysis of Heat Exchanging Performance of Heat Recovering Device Attached to Exhaust Gas Duct (열회수장치에 의한 열회수성능 분석)

  • 서원명;윤용철;강종국
    • Journal of Bio-Environment Control
    • /
    • v.9 no.4
    • /
    • pp.212-222
    • /
    • 2000
  • This study was performed to investigate the performance of heat recovery device attached to exhaust gas flue connected to combustion chamber of greenhouse heating system. The experimental heat recovery system is mainly consisted of LPG combustion chamber and two heat recovery units; unit-A is attached directly to the exhaust gas flue, and unit-B is connected with unit-A. Heat recovery performance was evaluated by estimating total energy amounts by using enthalpy difference between two measurement points together with mass flow rate of gas and/or air passing through each heat recovery unit depending on 5 different flow rates controlled by voltage meter. The results of this experimental study, such as heat exchange behavior of supply air tubes and exhaust air passages crossing the tubes, pressure drop between inlet and outlet, heat recovery performance of exchange unit, etc., will be used as fundamental data for designing optimum heat recovery device to be used for fuel saving purpose by reducing heat loss amounts mostly wasted outside of greenhouse through flue.

  • PDF

Function Approximation for Refrigerant Using the Neural Networks (신경회로망을 사용한 냉매의 함수근사)

  • Park, Jin-Hyun;Lee, Tae-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.677-680
    • /
    • 2005
  • In numerical analysis on the thermal performance of the heat exchanger with phase change fluids, the numerical values of thermodynamic properties are needed. But the steam table should be modeled properly as the direct use of thermodynamic properties of the steam table is impossible. In this study the function approximation characteristics of neural networks was used in modeling the saturated vapor region of refrigerant R12. The neural network consists of one input layer with one node, two hidden layers with 10 and 20 nodes each and one output layer with 7 nodes. Input can be both saturation temperature and saturation pressure and two cases were examined. The proposed model gives percentage error of ${\pm}$0.005% for enthalpy and entropy, ${\pm}$0.02% for specific volume and ${\pm}$0.02% for saturation pressure and saturation temperature except several points. From this results neural network could be a powerful method in function approximation of saturated vapor region of R12.

  • PDF

Comparison of the neural networks with spline interpolation in modelling superheated water (물의 과열증기 모델링에 대한 신경회로망과 스플라인 보간법 비교)

  • Lee, Tae-Hwan;Park, Jin-Hyun;Kim, Bong-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.4
    • /
    • pp.685-690
    • /
    • 2008
  • In numerically evaluating the thermal performance of the heat exchanger, numerical values of thermodynamic properties such as temperature, pressure, specific volume, enthalpy and entropy are required. But the steam table or diagram itself cannot be directly used without modelling. In this study the applicability of neural networks in modelling superheated water vapor was examined. The multi-layer neural networks consist of an input layer with 2 nodes, two hidden layers with 15 and 25 nodes respectively and an output layer with 3 nodes. Quadratic spline interpolation was also applied for comparison. Neural networks model revealed smaller percentage error compared with spline interpolation. From this result, it is confirmed that the neural networks could be a powerful method in modelling the superheated water vapor.

Recent Progress in Air Conditioning and Refrigeration Research - A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2004 and 2005 - (공기조화, 냉동 분야의 최근 연구 동향 -2004년 및 2005년 학회지 논문에 대한 종합적 고찰-)

  • Choi, Yong-Don;Kang, Yong-Tae;Kim, Nae-Hyun;Kim, Man-Hoe;Park, Kyoung-Kuhn;Park, Byung-Yoon;Park, Jin-Chul;Hong, Hi-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.1
    • /
    • pp.94-131
    • /
    • 2007
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 2004 and 2005 has been done. Focus has been put on current status of research in the aspect of heating, cooling, air-conditioning, ventilation, sanitation and building environment. The conclusions are as follows. (1) Most of fundamental studies on fluid flow were related with heat transportation of facilities. Drop formation and rivulet flow on solid surfaces were interesting topics related with condensation augmentation. Research on micro environment considering flow, heat, humidity was also interesting for comfortable living environment. It can be extended considering biological aspects. Development of fans and blowers of high performance and low noise were continuing topics. Well developed CFD and flow visualization(PIV, PTV and LDV methods) technologies were widely applied for developing facilities and their systems. (2) The research trends of the previous two yews are surveyed as groups of natural convection, forced convection, electronic cooling, heat transfer enhancement, frosting and defrosting, thermal properties, etc. New research topics introduced include natural convection heat transfer enhancement using nanofluid, supercritical cooling performance or oil miscibility of $CO_2$, enthalpy heat exchanger for heat recovery, heat transfer enhancement in a plate heat exchanger using fluid resonance. (3) The literature for the last two years($2004{\sim}2005$) is reviewed in the areas of heat pump, ice and water storage, cycle analysis and reused energy including geothermal, solar and unused energy). The research on cycle analysis and experiments for $CO_2$ was extensively carried out to replace the Ozone depleting and global warming refrigerants such as HFC and HCFC refrigerants. From the year of 2005, the Gas Engine Heat Pump(GHP) has been paid attention from the viewpoint of the gas cooling application. The heat pipe was focused on the performance improvement by the parametric analysis and the heat recovery applications. The storage systems were studied on the performance enhancement of the storage tank and cost analysis for heating and cooling applications. In the area of unused energy, the hybrid systems were extensively introduced and the life cycle cost analysis(LCCA) for the unused energy systems was also intensively carried out. (4) Recent studies of various refrigeration and air-conditioning systems have focused on the system performance and efficiency enhancement. Heat transfer characteristics during evaporation and condensation are investigated for several tube shapes and of alternative refrigerants including carbon dioxide. Efficiency of various compressors and expansion devices are also dealt with for better modeling and, in particular, performance improvement. Thermoelectric module and cooling systems are analyzed theoretically and experimentally. (5) According to the review of recent studies on ventilation systems, an appropriate ventilation systems including machenical and natural are required to satisfied the level of IAQ. Also, an recent studies on air-conditioning and absorption refrigeration systems, it has mainly focused on distribution and dehumidification of indoor air to improve the performance were carried out. (6) Based on a review of recent studies on indoor environment and building service systems, it is noticed that research issues have mainly focused on optimal thermal comfort, improvement of indoor air Quality and many innovative systems such as air-barrier type perimeter-less system with UFAC, radiant floor heating and cooling system and etc. New approaches are highlighted for improving indoor environmental condition as well as minimizing energy consumption, various activities of building control and operation strategy and energy performance analysis for economic evaluation.