• Title/Summary/Keyword: Enterohemorrhagic E. coli (EHEC) O157:H7

Search Result 5, Processing Time 0.027 seconds

Detection of Enterohemorrhagic Escherichia coli O157:H7 Strains Using Multiplex Polymerase Chain Reaction (Multiplex PCR을 이용한 장출혈성 대장균 O157:H7의 검출)

  • 엄용빈;김종배
    • Biomedical Science Letters
    • /
    • v.4 no.1
    • /
    • pp.43-56
    • /
    • 1998
  • A multiplex PCR method was designed by employing primers specific for the eaeA gene, conserved sequences of Shiga-like toxins (SLT-I.II), and the 60-MDa plasmid of enterohemorrhagic E. coli (EHEC) O157:H7 strain. A set of six synthetic oligonucleotide primers derived from sequences of the SLT-I.II, eaeA, and 60-MDa plasmid genes of E. coli O157:H7 were used in a multiplex PCR amplification procedure to detect these genes in the same enteric pathogens. In two enterohemorrhagic E. coli O157:H7 (ATCC 35150, ATCC 43894) reference strains, PCR products of 317bps (eaeA), 228bps (SLT-I.II), and 167bps (60-MDa plasmid) were successfully amplified simultaneously in a single reaction. However, the specific PCR products were not amplified in control strains of other enteric bacteria. The sensitivity of the multiplex PCR assay for detection of the SLT-I.II, eaeA, and 60-MDa plasmid genes of E. coli O157:H7 was found to be 2.5$\times$10$^{6}$ of bacteria in diarrheal stool to amplify all three bands. The multiplex PCR technology will allow large-scale screening of many clinical specimens or contaminated foods, and will be a very useful method for the detection of a wide range of microorganisms present in the environment, including EHEC O157:H7 in various types of specimens. The multiplex PCR assay has the potential to be used as a specific and rapid method for clinical diagnosis of disease caused by EHEC O157:H7.

  • PDF

Recombination and Expression of eaeA Gene in Enterohemorrhagic Escherichia coli O157:H7

  • Kim, Hong;Kim, Jong-Bae
    • Biomedical Science Letters
    • /
    • v.8 no.3
    • /
    • pp.107-113
    • /
    • 2002
  • Enterohemorrhagic Escherichia coli (EHEC) strains of serotype O157:H7 have been shown to colonize the intestinal epithelial cell by the attaching and effacing (AE) mechanism. The AE lesion is mediated by an intimin, of which production and expression are controlled by a 3-Kb eaeA gene located EHEC chromosomal DNA. If the eaeA gene is mutated, EHEC O157:H7 strains lose capacity of adhesion to intestinal epithelial cells. In this study, a 891 bp of the 3'-end region of a gamma intimin was amplified by polymerase chain reaction (PCR). The PCR product was inserted into pSTBlue-1 cloning vector and transformed into DE3 (BL21) competent cell. After plasmid mini-preparation and restriction enzyme digestion of eaeA/891-pSTBlue-1 vector, target eaeA gene was re-inserted into pET-28a expression vector and was transformed. Then the expression of recombinant eaeA/891 (891 bp) gene was induced by isopropyl-$\beta$-D-thiogalactopyranoside (IPTG). The expression of the 40-KDa recombinant protein was identified in SDS-PAGE and confirmed by immunoblotting using the His.Tag$^{\circledR}$ and T$_{7}$.Tag$^{\circledR}$ monoclonal antibody. This recombinant protein expressed by eaeA gene could be applied in further studies on the mechanisms of E. coli O157:H7 infection and the development of recombinant vaccine.

  • PDF

Interaction Between the Quorum Sensing and Stringent Response Regulation Systems in the Enterohemorrhagic Escherichia coli O157:H7 EDL933 Strain

  • Oh, Kyung-Hwan;Cho, Seung-Hak
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.3
    • /
    • pp.401-407
    • /
    • 2014
  • Quorum sensing and the stringent response are well-known regulation systems for the expression of virulence genes in enterohemorrhagic Escherichia coli (EHEC). However, how these two systems interact is not well known. E. coli strains with mutations in two regulation systems, ${\Delta}luxS$ (ECM101) and ${\Delta}luxS{\Delta}relA{\Delta}spoT$ (ECM201), and the ${\Delta}luxS$ complement strain to ECM201 (ECM202) were created from EHEC O157:H7 EDL933 to investigate how the regulatory systems interact. The phenotypic changes of the mutant strains were characterized and compared with the wild type. The mutant strains exhibited no obvious growth defects, although acid resistance and cellular cytotoxicity were decreased significantly in all the mutant strains. Phenotypic characterization revealed that mutations in the stringent response system (ECM201 and ECM202) influenced the metabolic (defective utilization of arabinose and L-sorbose) and enzymatic activities (decreased trypsin activity, and increased ${\alpha}$-glucosidase activity). In contrast, the quorum sensing system mutant (ECM101) did not display these phenotypes. The motility of the quorum sensing system mutant (ECM101) was unchanged, but mutation in the stringent response system influenced the motility. Our results suggest that quorum sensing interacts with the stringent response regulation system.

Adhesion Ability and Inhibition of Enterohemorrhagic E. coli O157:H7 Adhesion to Intestinal Epithelial Cells in Lactobacillus acidophilus (Lactobacillus acidophilus의 장 상피세포에 대한 부착능력 및 장 출혈성 대장균의 부착 억제 능력)

  • 김영훈;박순옥;한경식;오세종;유승권;김세헌
    • Food Science of Animal Resources
    • /
    • v.24 no.1
    • /
    • pp.86-91
    • /
    • 2004
  • The ability of probiotics containing Lactobacillus acidophilus to adhere to the intestinal epithelium may play an important role in colonization of the gastrointestinal tract and preventing enteric pathogen such as enterohemorrhagic E. coli(EHEC O157:H7. In the study, we investigated the adhesion to human intestinal epithelial cells(HT-29) of strains of L. acidophilus(3 from human, 2 from pig, and 1 from calf). All of the tested strains of L. acidophilus were highly observed adhesion ability(from 10$\^$6/ to 10$\^$7/ cfu/mL), compared to L. rhamnosus GG as control. Also, adhered strains of L. acidophilus were significantly preserved in serial wash-out steps. However, no correlation could be observed between cell surface hydrophobicity and adhesion abilities of the tested strains of L. acidophilus. Inhibition of adhesion of EHEC O157:H7 was also examined, a 2 log cycle reduction was observed by all of the tested strains of L. acidophilus. These results suggest that the strains of L. acidophilus with high adhesion ability are resistant to wash-out and adhesion ability inhibition by selected strains of L. acidophilus helps to prevent adhesion of EHEC O157:H7 to intestinal epithelial cells.

Shiga toxin-associated hemolytic uremic syndrome complicated by intestinal perforation in a child with typical hemolytic uremic syndrome

  • Chang, Hye Jin;Kim, Hwa Young;Choi, Jae Hong;Choi, Hyun Jin;Ko, Jae Sung;Ha, Il Soo;Cheong, Hae Il;Choi, Yong;Kang, Hee Gyung
    • Clinical and Experimental Pediatrics
    • /
    • v.57 no.2
    • /
    • pp.96-99
    • /
    • 2014
  • Hemolytic uremic syndrome (HUS) is one of the most common causes of acute renal failure in childhood and is primarily diagnosed in up to 4.5% of children who undergo chronic renal replacement therapy. Escherichia coli serotype O157:H7 is the predominant bacterial strain identified in patients with HUS; more than 100 types of Shiga toxin-producing enterohemorrhagic E. coli (EHEC) subtypes have also been isolated. The typical HUS manifestations are microangiopathic hemolytic anemia, thrombocytopenia, and renal insufficiency. In typical HUS cases, more serious EHEC manifestations include severe hemorrhagic colitis, bowel necrosis and perforation, rectal prolapse, peritonitis, and intussusceptions. Colonic perforation, which has an incidence of 1%-2%, can be a fatal complication. In this study, we report a typical Shiga toxin-associated HUS case complicated by small intestinal perforation with refractory peritonitis that was possibly because of ischemic enteritis. Although the degree of renal damage is the main concern in HUS, extrarenal complications should also be considered in severe cases, as presented in our case.