• Title/Summary/Keyword: Ensemble Tree Model

Search Result 68, Processing Time 0.03 seconds

An Ensemble Cascading Extremely Randomized Trees Framework for Short-Term Traffic Flow Prediction

  • Zhang, Fan;Bai, Jing;Li, Xiaoyu;Pei, Changxing;Havyarimana, Vincent
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.1975-1988
    • /
    • 2019
  • Short-term traffic flow prediction plays an important role in intelligent transportation systems (ITS) in areas such as transportation management, traffic control and guidance. For short-term traffic flow regression predictions, the main challenge stems from the non-stationary property of traffic flow data. In this paper, we design an ensemble cascading prediction framework based on extremely randomized trees (extra-trees) using a boosting technique called EET to predict the short-term traffic flow under non-stationary environments. Extra-trees is a tree-based ensemble method. It essentially consists of strongly randomizing both the attribute and cut-point choices while splitting a tree node. This mechanism reduces the variance of the model and is, therefore, more suitable for traffic flow regression prediction in non-stationary environments. Moreover, the extra-trees algorithm uses boosting ensemble technique averaging to improve the predictive accuracy and control overfitting. To the best of our knowledge, this is the first time that extra-trees have been used as fundamental building blocks in boosting committee machines. The proposed approach involves predicting 5 min in advance using real-time traffic flow data in the context of inherently considering temporal and spatial correlations. Experiments demonstrate that the proposed method achieves higher accuracy and lower variance and computational complexity when compared to the existing methods.

A Study on the Work-time Estimation for Block Erections Using Stacking Ensemble Learning (Stacking Ensemble Learning을 활용한 블록 탑재 시수 예측)

  • Kwon, Hyukcheon;Ruy, Wonsun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.6
    • /
    • pp.488-496
    • /
    • 2019
  • The estimation of block erection work time at a dock is one of the important factors when establishing or managing the total shipbuilding schedule. In order to predict the work time, it is a natural approach that the existing block erection data would be used to solve the problem. Generally the work time per unit is the product of coefficient value, quantity, and product value. Previously, the work time per unit is determined statistically by unit load data. However, we estimate the work time per unit through work time coefficient value from series ships using machine learning. In machine learning, the outcome depends mainly on how the training data is organized. Therefore, in this study, we use 'Feature Engineering' to determine which one should be used as features, and to check their influence on the result. In order to get the coefficient value of each block, we try to solve this problem through the Ensemble learning methods which is actively used nowadays. Among the many techniques of Ensemble learning, the final model is constructed by Stacking Ensemble techniques, consisting of the existing Ensemble models (Decision Tree, Random Forest, Gradient Boost, Square Loss Gradient Boost, XG Boost), and the accuracy is maximized by selecting three candidates among all models. Finally, the results of this study are verified by the predicted total work time for one ship among the same series.

The Effect of Input Variables Clustering on the Characteristics of Ensemble Machine Learning Model for Water Quality Prediction (입력자료 군집화에 따른 앙상블 머신러닝 모형의 수질예측 특성 연구)

  • Park, Jungsu
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.5
    • /
    • pp.335-343
    • /
    • 2021
  • Water quality prediction is essential for the proper management of water supply systems. Increased suspended sediment concentration (SSC) has various effects on water supply systems such as increased treatment cost and consequently, there have been various efforts to develop a model for predicting SSC. However, SSC is affected by both the natural and anthropogenic environment, making it challenging to predict SSC. Recently, advanced machine learning models have increasingly been used for water quality prediction. This study developed an ensemble machine learning model to predict SSC using the XGBoost (XGB) algorithm. The observed discharge (Q) and SSC in two fields monitoring stations were used to develop the model. The input variables were clustered in two groups with low and high ranges of Q using the k-means clustering algorithm. Then each group of data was separately used to optimize XGB (Model 1). The model performance was compared with that of the XGB model using the entire data (Model 2). The models were evaluated by mean squared error-ob servation standard deviation ratio (RSR) and root mean squared error. The RSR were 0.51 and 0.57 in the two monitoring stations for Model 2, respectively, while the model performance improved to RSR 0.46 and 0.55, respectively, for Model 1.

Enhancing prediction accuracy of concrete compressive strength using stacking ensemble machine learning

  • Yunpeng Zhao;Dimitrios Goulias;Setare Saremi
    • Computers and Concrete
    • /
    • v.32 no.3
    • /
    • pp.233-246
    • /
    • 2023
  • Accurate prediction of concrete compressive strength can minimize the need for extensive, time-consuming, and costly mixture optimization testing and analysis. This study attempts to enhance the prediction accuracy of compressive strength using stacking ensemble machine learning (ML) with feature engineering techniques. Seven alternative ML models of increasing complexity were implemented and compared, including linear regression, SVM, decision tree, multiple layer perceptron, random forest, Xgboost and Adaboost. To further improve the prediction accuracy, a ML pipeline was proposed in which the feature engineering technique was implemented, and a two-layer stacked model was developed. The k-fold cross-validation approach was employed to optimize model parameters and train the stacked model. The stacked model showed superior performance in predicting concrete compressive strength with a correlation of determination (R2) of 0.985. Feature (i.e., variable) importance was determined to demonstrate how useful the synthetic features are in prediction and provide better interpretability of the data and the model. The methodology in this study promotes a more thorough assessment of alternative ML algorithms and rather than focusing on any single ML model type for concrete compressive strength prediction.

Stochastic Simulation Model for non-stationary time series using Wavelet AutoRegressive Model

  • Moon, Young-Il;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1437-1440
    • /
    • 2007
  • Many hydroclimatic time series are marked by interannual and longer quasi-period features that are associated with narrow band oscillatory climate modes. A time series modeling approach that directly considers such structures is developed and presented. The essence of the approach is to first develop a wavelet decomposition of the time series that retains only the statistically significant wavelet components, and to then model each such component and the residual time series as univariate autoregressive processes. The efficacy of this approach is demonstrated through the simulation of observed and paleo reconstructions of climate indices related to ENSO and AMO, tree ring and rainfall time series. Long ensemble simulations that preserve the spectral attributes of the time series in each ensemble member can be generated. The usual low order statistics are preserved by the proposed model, and its long memory performance is superior to the direction application of an autoregressive model.

  • PDF

Ensemble of Nested Dichotomies for Activity Recognition Using Accelerometer Data on Smartphone (Ensemble of Nested Dichotomies 기법을 이용한 스마트폰 가속도 센서 데이터 기반의 동작 인지)

  • Ha, Eu Tteum;Kim, Jeongmin;Ryu, Kwang Ryel
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.4
    • /
    • pp.123-132
    • /
    • 2013
  • As the smartphones are equipped with various sensors such as the accelerometer, GPS, gravity sensor, gyros, ambient light sensor, proximity sensor, and so on, there have been many research works on making use of these sensors to create valuable applications. Human activity recognition is one such application that is motivated by various welfare applications such as the support for the elderly, measurement of calorie consumption, analysis of lifestyles, analysis of exercise patterns, and so on. One of the challenges faced when using the smartphone sensors for activity recognition is that the number of sensors used should be minimized to save the battery power. When the number of sensors used are restricted, it is difficult to realize a highly accurate activity recognizer or a classifier because it is hard to distinguish between subtly different activities relying on only limited information. The difficulty gets especially severe when the number of different activity classes to be distinguished is very large. In this paper, we show that a fairly accurate classifier can be built that can distinguish ten different activities by using only a single sensor data, i.e., the smartphone accelerometer data. The approach that we take to dealing with this ten-class problem is to use the ensemble of nested dichotomy (END) method that transforms a multi-class problem into multiple two-class problems. END builds a committee of binary classifiers in a nested fashion using a binary tree. At the root of the binary tree, the set of all the classes are split into two subsets of classes by using a binary classifier. At a child node of the tree, a subset of classes is again split into two smaller subsets by using another binary classifier. Continuing in this way, we can obtain a binary tree where each leaf node contains a single class. This binary tree can be viewed as a nested dichotomy that can make multi-class predictions. Depending on how a set of classes are split into two subsets at each node, the final tree that we obtain can be different. Since there can be some classes that are correlated, a particular tree may perform better than the others. However, we can hardly identify the best tree without deep domain knowledge. The END method copes with this problem by building multiple dichotomy trees randomly during learning, and then combining the predictions made by each tree during classification. The END method is generally known to perform well even when the base learner is unable to model complex decision boundaries As the base classifier at each node of the dichotomy, we have used another ensemble classifier called the random forest. A random forest is built by repeatedly generating a decision tree each time with a different random subset of features using a bootstrap sample. By combining bagging with random feature subset selection, a random forest enjoys the advantage of having more diverse ensemble members than a simple bagging. As an overall result, our ensemble of nested dichotomy can actually be seen as a committee of committees of decision trees that can deal with a multi-class problem with high accuracy. The ten classes of activities that we distinguish in this paper are 'Sitting', 'Standing', 'Walking', 'Running', 'Walking Uphill', 'Walking Downhill', 'Running Uphill', 'Running Downhill', 'Falling', and 'Hobbling'. The features used for classifying these activities include not only the magnitude of acceleration vector at each time point but also the maximum, the minimum, and the standard deviation of vector magnitude within a time window of the last 2 seconds, etc. For experiments to compare the performance of END with those of other methods, the accelerometer data has been collected at every 0.1 second for 2 minutes for each activity from 5 volunteers. Among these 5,900 ($=5{\times}(60{\times}2-2)/0.1$) data collected for each activity (the data for the first 2 seconds are trashed because they do not have time window data), 4,700 have been used for training and the rest for testing. Although 'Walking Uphill' is often confused with some other similar activities, END has been found to classify all of the ten activities with a fairly high accuracy of 98.4%. On the other hand, the accuracies achieved by a decision tree, a k-nearest neighbor, and a one-versus-rest support vector machine have been observed as 97.6%, 96.5%, and 97.6%, respectively.

Diabetes prediction mechanism using machine learning model based on patient IQR outlier and correlation coefficient (환자 IQR 이상치와 상관계수 기반의 머신러닝 모델을 이용한 당뇨병 예측 메커니즘)

  • Jung, Juho;Lee, Naeun;Kim, Sumin;Seo, Gaeun;Oh, Hayoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.10
    • /
    • pp.1296-1301
    • /
    • 2021
  • With the recent increase in diabetes incidence worldwide, research has been conducted to predict diabetes through various machine learning and deep learning technologies. In this work, we present a model for predicting diabetes using machine learning techniques with German Frankfurt Hospital data. We apply outlier handling using Interquartile Range (IQR) techniques and Pearson correlation and compare model-specific diabetes prediction performance with Decision Tree, Random Forest, Knn (k-nearest neighbor), SVM (support vector machine), Bayesian Network, ensemble techniques XGBoost, Voting, and Stacking. As a result of the study, the XGBoost technique showed the best performance with 97% accuracy on top of the various scenarios. Therefore, this study is meaningful in that the model can be used to accurately predict and prevent diabetes prevalent in modern society.

Object Classification Method Using Dynamic Random Forests and Genetic Optimization

  • Kim, Jae Hyup;Kim, Hun Ki;Jang, Kyung Hyun;Lee, Jong Min;Moon, Young Shik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.5
    • /
    • pp.79-89
    • /
    • 2016
  • In this paper, we proposed the object classification method using genetic and dynamic random forest consisting of optimal combination of unit tree. The random forest can ensure good generalization performance in combination of large amount of trees by assigning the randomization to the training samples and feature selection, etc. allocated to the decision tree as an ensemble classification model which combines with the unit decision tree based on the bagging. However, the random forest is composed of unit trees randomly, so it can show the excellent classification performance only when the sufficient amounts of trees are combined. There is no quantitative measurement method for the number of trees, and there is no choice but to repeat random tree structure continuously. The proposed algorithm is composed of random forest with a combination of optimal tree while maintaining the generalization performance of random forest. To achieve this, the problem of improving the classification performance was assigned to the optimization problem which found the optimal tree combination. For this end, the genetic algorithm methodology was applied. As a result of experiment, we had found out that the proposed algorithm could improve about 3~5% of classification performance in specific cases like common database and self infrared database compare with the existing random forest. In addition, we had shown that the optimal tree combination was decided at 55~60% level from the maximum trees.

Comparative characteristic of ensemble machine learning and deep learning models for turbidity prediction in a river (딥러닝과 앙상블 머신러닝 모형의 하천 탁도 예측 특성 비교 연구)

  • Park, Jungsu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.1
    • /
    • pp.83-91
    • /
    • 2021
  • The increased turbidity in rivers during flood events has various effects on water environmental management, including drinking water supply systems. Thus, prediction of turbid water is essential for water environmental management. Recently, various advanced machine learning algorithms have been increasingly used in water environmental management. Ensemble machine learning algorithms such as random forest (RF) and gradient boosting decision tree (GBDT) are some of the most popular machine learning algorithms used for water environmental management, along with deep learning algorithms such as recurrent neural networks. In this study GBDT, an ensemble machine learning algorithm, and gated recurrent unit (GRU), a recurrent neural networks algorithm, are used for model development to predict turbidity in a river. The observation frequencies of input data used for the model were 2, 4, 8, 24, 48, 120 and 168 h. The root-mean-square error-observations standard deviation ratio (RSR) of GRU and GBDT ranges between 0.182~0.766 and 0.400~0.683, respectively. Both models show similar prediction accuracy with RSR of 0.682 for GRU and 0.683 for GBDT. The GRU shows better prediction accuracy when the observation frequency is relatively short (i.e., 2, 4, and 8 h) where GBDT shows better prediction accuracy when the observation frequency is relatively long (i.e. 48, 120, 160 h). The results suggest that the characteristics of input data should be considered to develop an appropriate model to predict turbidity.

A Study on the Prediction Models of Used Car Prices Using Ensemble Model And SHAP Value: Focus on Feature of the Vehicle Type (앙상블 모델과 SHAP Value를 활용한 국내 중고차 가격 예측 모델에 관한 연구: 차종 특성을 중심으로)

  • Seungjun Yim;Joungho Lee;Choonho Ryu
    • Journal of Service Research and Studies
    • /
    • v.14 no.1
    • /
    • pp.27-43
    • /
    • 2024
  • The market share of online platform services in the used car market continues to expand. And The used car online platform service provides service users with specifications of vehicles, accident history, inspection details, detailed options, and prices of used cars. SUV vehicle type's share in the domestic automobile market will be more than 50% in 2023, Sales of Hybrid vehicle type are doubled compared to last year. And these vehicle types are also gaining popularity in the used car market. Prior research has proposed a used car price prediction model by executing a Machine Learning model for all vehicles or vehicles by brand. On the other hand, the popularity of SUV and Hybrid vehicles in the domestic market continues to rise, but It was difficult to find a study that proposed a used car price prediction model for these vehicle type. This study selects a used car price prediction model by vehicle type using vehicle specifications and options for Sedans, SUV, and Hybrid vehicles produced by domestic brands. Accordingly, after selecting feature through the Lasso regression model, which is a feature selection, the ensemble model was sequentially executed with the same sampling, and the best model by vehicle type was selected. As a result, the best model for all models was selected as the CBR model, and the contribution and direction of the features were confirmed by visualizing Tree SHAP Value for the best model for each model. The implications of this study are expected to propose a used car price prediction model by vehicle type to sales officials using online platform services, confirm the attribution and direction of features, and help solve problems caused by asymmetry fo information between them.