• 제목/요약/키워드: Ensemble Machine learning

검색결과 234건 처리시간 0.02초

기계학습을 이용한 수출신용보증 사고예측 (The Prediction of Export Credit Guarantee Accident using Machine Learning)

  • 조재영;주지환;한인구
    • 지능정보연구
    • /
    • 제27권1호
    • /
    • pp.83-102
    • /
    • 2021
  • 2020년 8월 정부는 한국판 뉴딜을 뒷받침하기 위한 공공기관의 역할 강화방안으로서 각 공공기관별 역량을 바탕으로 5대 분야에 걸쳐 총 20가지 과제를 선정하였다. 빅데이터(Big Data), 인공지능 등을 활용하여 대국민 서비스를 제고하고 공공기관이 보유한 양질의 데이터를 개방하는 등의 다양한 정책을 통해 한국판 뉴딜(New Deal)의 성과를 조기에 창출하고 이를 극대화하기 위한 다양한 노력을 기울이고 있다. 그중에서 한국무역보험공사(KSURE)는 정책금융 공공기관으로 국내 수출기업들을 지원하기 위해 여러 제도를 운영하고 있는데 아직까지는 본 기관이 가지고 있는 빅데이터를 적극적으로 활용하지 못하고 있는 실정이다. 본 연구는 한국무역보험공사의 수출신용보증 사고 발생을 사전에 예측하고자 공사가 보유한 내부 데이터에 기계학습 모형을 적용하였고 해당 모형 간에 예측성과를 비교하였다. 예측 모형으로는 로지스틱(Logit) 회귀모형, 랜덤 포레스트(Random Forest), XGBoost, LightGBM, 심층신경망을 사용하였고, 평가 기준으로는 전체 표본의 예측 정확도 이외에도 표본별 사고 확률을 구간으로 나누어 높은 확률로 예측된 표본과 낮은 확률로 예측된 경우의 정확도를 서로 비교하였다. 각 모형별 전체 표본의 예측 정확도는 70% 내외로 나타났고 개별 표본을 사고 확률 구간별로 세부 분석한 결과 양 극단의 확률구간(0~20%, 80~100%)에서 90~100%의 예측 정확도를 보여 모형의 현실적 활용 가능성을 보여주었다. 제2종 오류의 중요성 및 전체적 예측 정확도를 종합적으로 고려할 경우, XGBoost와 심층신경망이 가장 우수한 모형으로 평가되었다. 랜덤포레스트와 LightGBM은 그 다음으로 우수하며, 로지스틱 회귀모형은 가장 낮은 성과를 보였다. 본 연구는 한국무역보험공사의 빅데이터를 기계학습모형으로 분석해 업무의 효율성을 높이는 사례로서 향후 기계학습 등을 활용하여 실무 현장에서 빅데이터 분석 및 활용이 활발해지기를 기대한다.

배깅과 부스팅 알고리즘을 이용한 핸드볼 결과 예측 비교 (Comparison of Handball Result Predictions Using Bagging and Boosting Algorithms)

  • 김지응;박종철;김태규;이희화;안지환
    • 한국융합학회논문지
    • /
    • 제12권8호
    • /
    • pp.279-286
    • /
    • 2021
  • 본 연구는 여자핸드볼 경기에서 발생되는 움직임 정보를 바탕으로 앙상블 기법의 배깅과 부스팅 알고리즘의 예측력을 비교하고, 움직임 정보의 활용가능성을 분석하는데 목적이 있다. 연구의 목적을 달성하기 위하여 15번의 연습경기에서 관성센서를 활용해 수집한 움직임 정보를 활용한 경기 결과예측을 랜덤포레스트와 Adaboost 알고리즘을 활용해 비교·분석하였다. 연구결과 첫째, 랜덤포레스트 알고리즘의 예측률은 66.9 ± 0.1%로 나타났으며, Adaboost 알고리즘의 예측률은 65.6 ± 1.6%로 나타났다. 둘째, 랜덤포레스트는 승리 결과는 모두 예측하였고, 패배의 결과는 하나도 예측하지 못하였다. 반면, Adaboost 알고리즘은 승리 예측 91.4%, 패배예측 10.4%라고 나타났다. 셋째, 알고리즘의 적합성 여부에서 랜덤포레스트는 과적합의 오류가 없었지만, Adaboost는 과적합의 오류가 나타났다. 본 연구결과를 바탕으로 스포츠경기를 예측할 때 움직임 정보도 활용 가능성을 확인하였으며, 랜덤포레스트 알고리즘이 보다 우수함을 확인하였다.

이차원 고객충성도 세그먼트 기반의 고객이탈예측 방법론 (A Methodology of Customer Churn Prediction based on Two-Dimensional Loyalty Segmentation)

  • 김형수;홍승우
    • 지능정보연구
    • /
    • 제26권4호
    • /
    • pp.111-126
    • /
    • 2020
  • CRM의 하위 연구 분야로 진행되었던 고객이탈예측은 최근 비즈니스 머신러닝 기술의 발전으로 인해 빅데이터 기반의 퍼포먼스 마케팅 주제로 더욱 그 중요도가 높아지고 있다. 그러나, 기존의 관련 연구는 예측 모형 자체의 성능을 개선시키는 것이 주요 목적이었으며, 전체적인 고객이탈예측 프로세스를 개선하고자 하는 연구는 상대적으로 부족했다. 본 연구는 성공적인 고객이탈관리가 모형 자체의 성능보다는 전체 프로세스의 개선을 통해 더 잘 이루어질 수 있다는 가정하에, 이차원 고객충성도 세그먼트 기반의 고객이탈예측 프로세스 (CCP/2DL: Customer Churn Prediction based on Two-Dimensional Loyalty segmentation)를 제안한다. CCP/2DL은 양방향, 즉 양적 및 질적 로열티 기반의 고객세분화를 시행하고, 고객세그먼트들을 이탈패턴에 따라 2차 그룹핑을 실시한 뒤, 이탈패턴 그룹별 이질적인 이탈예측 모형을 독립적으로 적용하는 일련의 이탈예측 프로세스이다. 제안한 이탈예측 프로세스의 상대적 우수성을 평가하기 위해 기존의 범용이탈예측 프로세스와 클러스터링 기반 이탈예측 프로세스와의 성능 비교를 수행하였다. 글로벌 NGO 단체인 A사의 협력으로 후원자 데이터를 활용한 분석과 검증을 수행했으며, 제안한 CCP/2DL의 성능이 다른 이탈예측 방법론보다 우수한 성능을 보이는 것으로 나타났다. 이러한 이탈예측 프로세스는 이탈예측에도 효과적일 뿐만 아니라, 다양한 고객통찰력을 확보하고, 관련된 다른 퍼포먼스 마케팅 활동을 수행할 수 있는 전략적 기반이 될 수 있다는 점에서 연구의 의의를 찾을 수 있다.

시스템적인 군집 확인과 뉴스를 이용한 주가 예측 (Predicting stock movements based on financial news with systematic group identification)

  • 성노윤;남기환
    • 지능정보연구
    • /
    • 제25권3호
    • /
    • pp.1-17
    • /
    • 2019
  • 빅데이터 시대에 정보의 양이 급증하고, 그중 많은 부분을 차지하는 문자열 정보를 정량화하여 의미를 찾아 낼 수 있는 인공지능 방법론이 함께 발전하면서, 텍스트 마이닝을 통해 주가 예측에 적용해 온라인 뉴스로 주가를 예측하려는 시도가 다양해지고 있다. 이러한 주가 예측의 방법은 대개 예측하고자 하는 기업의 뉴스로 주가를 예측하는 방식이다. 하지만 특정 회사의 뉴스만이 그 회사의 주가에 영향을 주는 것이 아니라, 그 회사와 관련성이 높은 회사들의 뉴스 또한 주가에 영향을 줄 수 있다. 그러나 관련성이 높은 기업을 찾는 것은 시장 전반의 공통적인 영향과 무작위 신호 때문에 쉽지 않다. 따라서 기존 연구들은 주로 미리 정해진 국제 산업 분류 표준에 기반을 둬 관련성이 높은 기업을 찾았다. 하지만 최근 연구에 따르면, 국제 산업 분류 표준은 섹터에 따라 동질성이 다르며, 동질성이 낮은 섹터는 그들을 모두 함께 고려하여 주가를 예측하는 것이 성능에 악영향을 줄 수 있다는 한계점을 가진다. 이러한 한계점을 극복하기 위해, 본 논문에서는 주가 예측 연구에서 처음으로 경제물리학에서 주로 사용되는 무작위 행렬 이론을 사용하여 시장 전반 효과와 무작위 신호를 제거하고 군집 분석을 시행하여 관련성이 높은 회사를 찾는 방법을 제시하였다. 또한, 이를 기반으로 관련성이 높은 회사의 뉴스를 함께 고려하며 다중 커널 학습을 사용하는 인공지능 모형을 제시한다. 본 논문의 결과는 무작위 행렬 이론을 통해 시장 전반의 효과와 무작위 신호를 제거하여 정확한 상관 계수를 찾아 군집 분석을 시행한다면 기존 연구보다 더 좋은 성능을 보여 준다는 것을 보여준다.