• Title/Summary/Keyword: Ensemble Machine learning

Search Result 229, Processing Time 0.029 seconds

Predictive Models for the Tourism and Accommodation Industry in the Era of Smart Tourism: Focusing on the COVID-19 Pandemic (스마트관광 시대의 관광숙박업 영업 예측 모형: 코로나19 팬더믹을 중심으로)

  • Yu Jin Jo;Cha Mi Kim;Seung Yeon Son;Mi Jin Noh
    • Smart Media Journal
    • /
    • v.12 no.8
    • /
    • pp.18-25
    • /
    • 2023
  • The COVID-19 outbreak in 2020 caused continuous damage worldwode, especially the smart tourism industry was hit directly by the blockade of sky roads and restriction of going out. At a time when overseas travel and domestic travel have decreased significantly, the number of tourist hotels that are colsed and closed due to the continued deficit is increasing. Therefore, in this study, licensing data from the Ministry of Public Administraion and Security were collected and visualized to understand the operation status of the tourism and lodging industry. The machine learning classification algorithm was applied to implement the business status prediction model of the tourist hotel, the performance of the prediction model was optimized using the ensemble algorithm, and the performance of the model was evaluated through 5-Fold cross-validation. It was predicted that the survival rate of tourist hotels would decrease somewhat, but the actual survival rate was analyzed to be no different from before COVID-19. Through the prediction of the business status of the hotel industry in this paper, it can be used as a basis for grasping the operability and development trends of the entire tourism and lodging industry.

An AutoML-driven Antenna Performance Prediction Model in the Autonomous Driving Radar Manufacturing Process

  • So-Hyang Bak;Kwanghoon Pio Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.12
    • /
    • pp.3330-3344
    • /
    • 2023
  • This paper proposes an antenna performance prediction model in the autonomous driving radar manufacturing process. Our research work is based upon a challenge dataset, Driving Radar Manufacturing Process Dataset, and a typical AutoML machine learning workflow engine, Pycaret open-source Python library. Note that the dataset contains the total 70 data-items, out of which 54 used as input features and 16 used as output features, and the dataset is properly built into resolving the multi-output regression problem. During the data regression analysis and preprocessing phase, we identified several input features having similar correlations and so detached some of those input features, which may become a serious cause of the multicollinearity problem that affect the overall model performance. In the training phase, we train each of output-feature regression models by using the AutoML approach. Next, we selected the top 5 models showing the higher performances in the AutoML result reports and applied the ensemble method so as for the selected models' performances to be improved. In performing the experimental performance evaluation of the regression prediction model, we particularly used two metrics, MAE and RMSE, and the results of which were 0.6928 and 1.2065, respectively. Additionally, we carried out a series of experiments to verify the proposed model's performance by comparing with other existing models' performances. In conclusion, we enhance accuracy for safer autonomous vehicles, reduces manufacturing costs through AutoML-Pycaret and machine learning ensembled model, and prevents the production of faulty radar systems, conserving resources. Ultimately, the proposed model holds significant promise not only for antenna performance but also for improving manufacturing quality and advancing radar systems in autonomous vehicles.

Ensemble of Nested Dichotomies for Activity Recognition Using Accelerometer Data on Smartphone (Ensemble of Nested Dichotomies 기법을 이용한 스마트폰 가속도 센서 데이터 기반의 동작 인지)

  • Ha, Eu Tteum;Kim, Jeongmin;Ryu, Kwang Ryel
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.4
    • /
    • pp.123-132
    • /
    • 2013
  • As the smartphones are equipped with various sensors such as the accelerometer, GPS, gravity sensor, gyros, ambient light sensor, proximity sensor, and so on, there have been many research works on making use of these sensors to create valuable applications. Human activity recognition is one such application that is motivated by various welfare applications such as the support for the elderly, measurement of calorie consumption, analysis of lifestyles, analysis of exercise patterns, and so on. One of the challenges faced when using the smartphone sensors for activity recognition is that the number of sensors used should be minimized to save the battery power. When the number of sensors used are restricted, it is difficult to realize a highly accurate activity recognizer or a classifier because it is hard to distinguish between subtly different activities relying on only limited information. The difficulty gets especially severe when the number of different activity classes to be distinguished is very large. In this paper, we show that a fairly accurate classifier can be built that can distinguish ten different activities by using only a single sensor data, i.e., the smartphone accelerometer data. The approach that we take to dealing with this ten-class problem is to use the ensemble of nested dichotomy (END) method that transforms a multi-class problem into multiple two-class problems. END builds a committee of binary classifiers in a nested fashion using a binary tree. At the root of the binary tree, the set of all the classes are split into two subsets of classes by using a binary classifier. At a child node of the tree, a subset of classes is again split into two smaller subsets by using another binary classifier. Continuing in this way, we can obtain a binary tree where each leaf node contains a single class. This binary tree can be viewed as a nested dichotomy that can make multi-class predictions. Depending on how a set of classes are split into two subsets at each node, the final tree that we obtain can be different. Since there can be some classes that are correlated, a particular tree may perform better than the others. However, we can hardly identify the best tree without deep domain knowledge. The END method copes with this problem by building multiple dichotomy trees randomly during learning, and then combining the predictions made by each tree during classification. The END method is generally known to perform well even when the base learner is unable to model complex decision boundaries As the base classifier at each node of the dichotomy, we have used another ensemble classifier called the random forest. A random forest is built by repeatedly generating a decision tree each time with a different random subset of features using a bootstrap sample. By combining bagging with random feature subset selection, a random forest enjoys the advantage of having more diverse ensemble members than a simple bagging. As an overall result, our ensemble of nested dichotomy can actually be seen as a committee of committees of decision trees that can deal with a multi-class problem with high accuracy. The ten classes of activities that we distinguish in this paper are 'Sitting', 'Standing', 'Walking', 'Running', 'Walking Uphill', 'Walking Downhill', 'Running Uphill', 'Running Downhill', 'Falling', and 'Hobbling'. The features used for classifying these activities include not only the magnitude of acceleration vector at each time point but also the maximum, the minimum, and the standard deviation of vector magnitude within a time window of the last 2 seconds, etc. For experiments to compare the performance of END with those of other methods, the accelerometer data has been collected at every 0.1 second for 2 minutes for each activity from 5 volunteers. Among these 5,900 ($=5{\times}(60{\times}2-2)/0.1$) data collected for each activity (the data for the first 2 seconds are trashed because they do not have time window data), 4,700 have been used for training and the rest for testing. Although 'Walking Uphill' is often confused with some other similar activities, END has been found to classify all of the ten activities with a fairly high accuracy of 98.4%. On the other hand, the accuracies achieved by a decision tree, a k-nearest neighbor, and a one-versus-rest support vector machine have been observed as 97.6%, 96.5%, and 97.6%, respectively.

Ensemble Learning for Solving Data Imbalance in Bankruptcy Prediction (기업부실 예측 데이터의 불균형 문제 해결을 위한 앙상블 학습)

  • Kim, Myoung-Jong
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.3
    • /
    • pp.1-15
    • /
    • 2009
  • In a classification problem, data imbalance occurs when the number of instances in one class greatly outnumbers the number of instances in the other class. Such data sets often cause a default classifier to be built due to skewed boundary and thus the reduction in the classification accuracy of such a classifier. This paper proposes a Geometric Mean-based Boosting (GM-Boost) to resolve the problem of data imbalance. Since GM-Boost introduces the notion of geometric mean, it can perform learning process considering both majority and minority sides, and reinforce the learning on misclassified data. An empirical study with bankruptcy prediction on Korea companies shows that GM-Boost has the higher classification accuracy than previous methods including Under-sampling, Over-Sampling, and AdaBoost, used in imbalanced data and robust learning performance regardless of the degree of data imbalance.

  • PDF

Prediction of arrhythmia using multivariate time series data (다변량 시계열 자료를 이용한 부정맥 예측)

  • Lee, Minhai;Noh, Hohsuk
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.5
    • /
    • pp.671-681
    • /
    • 2019
  • Studies on predicting arrhythmia using machine learning have been actively conducted with increasing number of arrhythmia patients. Existing studies have predicted arrhythmia based on multivariate data of feature variables extracted from RR interval data at a specific time point. In this study, we consider that the pattern of the heart state changes with time can be important information for the arrhythmia prediction. Therefore, we investigate the usefulness of predicting the arrhythmia with multivariate time series data obtained by extracting and accumulating the multivariate vectors of the feature variables at various time points. When considering 1-nearest neighbor classification method and its ensemble for comparison, it is confirmed that the multivariate time series data based method can have better classification performance than the multivariate data based method if we select an appropriate time series distance function.

Modeling and Selecting Optimal Features for Machine Learning Based Detections of Android Malwares (머신러닝 기반 안드로이드 모바일 악성 앱의 최적 특징점 선정 및 모델링 방안 제안)

  • Lee, Kye Woong;Oh, Seung Taek;Yoon, Young
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.11
    • /
    • pp.427-432
    • /
    • 2019
  • In this paper, we propose three approaches to modeling Android malware. The first method involves human security experts for meticulously selecting feature sets. With the second approach, we choose 300 features with the highest importance among the top 99% features in terms of occurrence rate. The third approach is to combine multiple models and identify malware through weighted voting. In addition, we applied a novel method of eliminating permission information which used to be regarded as a critical factor for distinguishing malware. With our carefully generated feature sets and the weighted voting by the ensemble algorithm, we were able to reach the highest malware detection accuracy of 97.8%. We also verified that discarding the permission information lead to the improvement in terms of false positive and false negative rates.

Analysis and Prediction of (Ultra) Air Pollution based on Meteorological Data and Atmospheric Environment Data (기상 데이터와 대기 환경 데이터 기반 (초)미세먼지 분석과 예측)

  • Park, Hong-Jin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.4
    • /
    • pp.328-337
    • /
    • 2021
  • Air pollution, which is a class 1 carcinogen, such as asbestos and benzene, is the cause of various diseases. The spread of ultra-air pollution is one of the important causes of the spread of the corona virus. This paper analyzes and predicts fine dust and ultra-air pollution from 2015 to 2019 based on weather data such as average temperature, precipitation, and average wind speed in Seoul and atmospheric environment data such as SO2, NO2, and O3. Linear regression, SVM, and ensemble models among machine learning models were compared and analyzed to predict fine dust by grasping and analyzing the status of air pollution and ultra-air pollution by season and month. In addition, important features(attributes) that affect the generation of fine dust and ultra-air pollution are identified. The highest ultra-air pollution was found in March, and the lowest ultra-air pollution was observed from August to September. In the case of meteorological data, the data that has the most influence on ultra-air pollution is average temperature, and in the case of meteorological data and atmospheric environment data, NO2 has the greatest effect on ultra-air pollution generation.

Assessing the Landslide Susceptibility of Cultural Heritages of Buyeo-gun, Chungcheongnam-do (충남 부여군 문화재의 산사태 민감성 평가)

  • Kim, Jun-Woo;Kim, Ho Gul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.5
    • /
    • pp.1-13
    • /
    • 2022
  • The damages caused by landslides are increasing worldwide due to climate change. In Korea, damages from landslides occur frequently, making it necessary to develop the effective response strategies. In particular, there is a lack of countermeasures against landslides in cultural heritage areas. The purpose of this study was to spatially analyze the relationship between Buyeo-gun's cultural heritage and landslide susceptible areas in Buyeo-gun, Chungcheongnam-do, which has a long history. Nine spatial distribution models were used to evaluate the landslide susceptibility, and the ensemble method was applied to reduce the uncertainty of individual model. There were 17 cultural heritages belonging to the landslide susceptible area. As a result of calculating the area ratio of the landslide susceptible area for cultural heritages, the cultural heritages with 100% of the area included in the landslide susceptible area were "Standing statue of Maae in Hongsan Sangcheon-ri" and "Statue of King Seonjo." More than 35% of "Jeungsanseong", "Garimseong", and "Standing stone statue of Maitreya Bodhisattva in Daejosa Temple" belonged to landslide susceptible areas. In order to effectively prevent landslide damage, the application of landslide prevention measures should be prioritized according to the proportion belonging to the landslide susceptible area. Since it is very difficult to restore cultural properties once destroyed, preventive measures are required before landslide damage occurs. The approach and results of this study provide basic data and guidelines for disaster response plans to prevent landslides in Buyeo-gun.

Identifying sources of heavy metal contamination in stream sediments using machine learning classifiers (기계학습 분류모델을 이용한 하천퇴적물의 중금속 오염원 식별)

  • Min Jeong Ban;Sangwook Shin;Dong Hoon Lee;Jeong-Gyu Kim;Hosik Lee;Young Kim;Jeong-Hun Park;ShunHwa Lee;Seon-Young Kim;Joo-Hyon Kang
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.306-314
    • /
    • 2023
  • Stream sediments are an important component of water quality management because they are receptors of various pollutants such as heavy metals and organic matters emitted from upland sources and can be secondary pollution sources, adversely affecting water environment. To effectively manage the stream sediments, identification of primary sources of sediment contamination and source-associated control strategies will be required. We evaluated the performance of machine learning models in identifying primary sources of sediment contamination based on the physico-chemical properties of stream sediments. A total of 356 stream sediment data sets of 18 quality parameters including 10 heavy metal species(Cd, Cu, Pb, Ni, As, Zn, Cr, Hg, Li, and Al), 3 soil parameters(clay, silt, and sand fractions), and 5 water quality parameters(water content, loss on ignition, total organic carbon, total nitrogen, and total phosphorous) were collected near abandoned metal mines and industrial complexes across the four major river basins in Korea. Two machine learning algorithms, linear discriminant analysis (LDA) and support vector machine (SVM) classifiers were used to classify the sediments into four cases of different combinations of the sampling period and locations (i.e., mine in dry season, mine in wet season, industrial complex in dry season, and industrial complex in wet season). Both models showed good performance in the classification, with SVM outperformed LDA; the accuracy values of LDA and SVM were 79.5% and 88.1%, respectively. An SVM ensemble model was used for multi-label classification of the multiple contamination sources inlcuding landuses in the upland areas within 1 km radius from the sampling sites. The results showed that the multi-label classifier was comparable performance with sinlgle-label SVM in classifying mines and industrial complexes, but was less accurate in classifying dominant land uses (50~60%). The poor performance of the multi-label SVM is likely due to the overfitting caused by small data sets compared to the complexity of the model. A larger data set might increase the performance of the machine learning models in identifying contamination sources.

Prediction and Analysis of PM2.5 Concentration in Seoul Using Ensemble-based Model (앙상블 기반 모델을 이용한 서울시 PM2.5 농도 예측 및 분석)

  • Ryu, Minji;Son, Sanghun;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1191-1205
    • /
    • 2022
  • Particulate matter(PM) among air pollutants with complex and widespread causes is classified according to particle size. Among them, PM2.5 is very small in size and can cause diseases in the human respiratory tract or cardiovascular system if inhaled by humans. In order to prepare for these risks, state-centered management and preventable monitoring and forecasting are important. This study tried to predict PM2.5 in Seoul, where high concentrations of fine dust occur frequently, using two ensemble models, random forest (RF) and extreme gradient boosting (XGB) using 15 local data assimilation and prediction system (LDAPS) weather-related factors, aerosol optical depth (AOD) and 4 chemical factors as independent variables. Performance evaluation and factor importance evaluation of the two models used for prediction were performed, and seasonal model analysis was also performed. As a result of prediction accuracy, RF showed high prediction accuracy of R2 = 0.85 and XGB R2 = 0.91, and it was confirmed that XGB was a more suitable model for PM2.5 prediction than RF. As a result of the seasonal model analysis, it can be said that the prediction performance was good compared to the observed values with high concentrations in spring. In this study, PM2.5 of Seoul was predicted using various factors, and an ensemble-based PM2.5 prediction model showing good performance was constructed.