• Title/Summary/Keyword: Ensemble Machine Learning Models

Search Result 138, Processing Time 0.025 seconds

Improving the Accuracy of Document Classification by Learning Heterogeneity (이질성 학습을 통한 문서 분류의 정확성 향상 기법)

  • Wong, William Xiu Shun;Hyun, Yoonjin;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.21-44
    • /
    • 2018
  • In recent years, the rapid development of internet technology and the popularization of smart devices have resulted in massive amounts of text data. Those text data were produced and distributed through various media platforms such as World Wide Web, Internet news feeds, microblog, and social media. However, this enormous amount of easily obtained information is lack of organization. Therefore, this problem has raised the interest of many researchers in order to manage this huge amount of information. Further, this problem also required professionals that are capable of classifying relevant information and hence text classification is introduced. Text classification is a challenging task in modern data analysis, which it needs to assign a text document into one or more predefined categories or classes. In text classification field, there are different kinds of techniques available such as K-Nearest Neighbor, Naïve Bayes Algorithm, Support Vector Machine, Decision Tree, and Artificial Neural Network. However, while dealing with huge amount of text data, model performance and accuracy becomes a challenge. According to the type of words used in the corpus and type of features created for classification, the performance of a text classification model can be varied. Most of the attempts are been made based on proposing a new algorithm or modifying an existing algorithm. This kind of research can be said already reached their certain limitations for further improvements. In this study, aside from proposing a new algorithm or modifying the algorithm, we focus on searching a way to modify the use of data. It is widely known that classifier performance is influenced by the quality of training data upon which this classifier is built. The real world datasets in most of the time contain noise, or in other words noisy data, these can actually affect the decision made by the classifiers built from these data. In this study, we consider that the data from different domains, which is heterogeneous data might have the characteristics of noise which can be utilized in the classification process. In order to build the classifier, machine learning algorithm is performed based on the assumption that the characteristics of training data and target data are the same or very similar to each other. However, in the case of unstructured data such as text, the features are determined according to the vocabularies included in the document. If the viewpoints of the learning data and target data are different, the features may be appearing different between these two data. In this study, we attempt to improve the classification accuracy by strengthening the robustness of the document classifier through artificially injecting the noise into the process of constructing the document classifier. With data coming from various kind of sources, these data are likely formatted differently. These cause difficulties for traditional machine learning algorithms because they are not developed to recognize different type of data representation at one time and to put them together in same generalization. Therefore, in order to utilize heterogeneous data in the learning process of document classifier, we apply semi-supervised learning in our study. However, unlabeled data might have the possibility to degrade the performance of the document classifier. Therefore, we further proposed a method called Rule Selection-Based Ensemble Semi-Supervised Learning Algorithm (RSESLA) to select only the documents that contributing to the accuracy improvement of the classifier. RSESLA creates multiple views by manipulating the features using different types of classification models and different types of heterogeneous data. The most confident classification rules will be selected and applied for the final decision making. In this paper, three different types of real-world data sources were used, which are news, twitter and blogs.

Identifying sources of heavy metal contamination in stream sediments using machine learning classifiers (기계학습 분류모델을 이용한 하천퇴적물의 중금속 오염원 식별)

  • Min Jeong Ban;Sangwook Shin;Dong Hoon Lee;Jeong-Gyu Kim;Hosik Lee;Young Kim;Jeong-Hun Park;ShunHwa Lee;Seon-Young Kim;Joo-Hyon Kang
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.306-314
    • /
    • 2023
  • Stream sediments are an important component of water quality management because they are receptors of various pollutants such as heavy metals and organic matters emitted from upland sources and can be secondary pollution sources, adversely affecting water environment. To effectively manage the stream sediments, identification of primary sources of sediment contamination and source-associated control strategies will be required. We evaluated the performance of machine learning models in identifying primary sources of sediment contamination based on the physico-chemical properties of stream sediments. A total of 356 stream sediment data sets of 18 quality parameters including 10 heavy metal species(Cd, Cu, Pb, Ni, As, Zn, Cr, Hg, Li, and Al), 3 soil parameters(clay, silt, and sand fractions), and 5 water quality parameters(water content, loss on ignition, total organic carbon, total nitrogen, and total phosphorous) were collected near abandoned metal mines and industrial complexes across the four major river basins in Korea. Two machine learning algorithms, linear discriminant analysis (LDA) and support vector machine (SVM) classifiers were used to classify the sediments into four cases of different combinations of the sampling period and locations (i.e., mine in dry season, mine in wet season, industrial complex in dry season, and industrial complex in wet season). Both models showed good performance in the classification, with SVM outperformed LDA; the accuracy values of LDA and SVM were 79.5% and 88.1%, respectively. An SVM ensemble model was used for multi-label classification of the multiple contamination sources inlcuding landuses in the upland areas within 1 km radius from the sampling sites. The results showed that the multi-label classifier was comparable performance with sinlgle-label SVM in classifying mines and industrial complexes, but was less accurate in classifying dominant land uses (50~60%). The poor performance of the multi-label SVM is likely due to the overfitting caused by small data sets compared to the complexity of the model. A larger data set might increase the performance of the machine learning models in identifying contamination sources.

Water Level Prediction on the Golok River Utilizing Machine Learning Technique to Evaluate Flood Situations

  • Pheeranat Dornpunya;Watanasak Supaking;Hanisah Musor;Oom Thaisawasdi;Wasukree Sae-tia;Theethut Khwankeerati;Watcharaporn Soyjumpa
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.31-31
    • /
    • 2023
  • During December 2022, the northeast monsoon, which dominates the south and the Gulf of Thailand, had significant rainfall that impacted the lower southern region, causing flash floods, landslides, blustery winds, and the river exceeding its bank. The Golok River, located in Narathiwat, divides the border between Thailand and Malaysia was also affected by rainfall. In flood management, instruments for measuring precipitation and water level have become important for assessing and forecasting the trend of situations and areas of risk. However, such regions are international borders, so the installed measuring telemetry system cannot measure the rainfall and water level of the entire area. This study aims to predict 72 hours of water level and evaluate the situation as information to support the government in making water management decisions, publicizing them to relevant agencies, and warning citizens during crisis events. This research is applied to machine learning (ML) for water level prediction of the Golok River, Lan Tu Bridge area, Sungai Golok Subdistrict, Su-ngai Golok District, Narathiwat Province, which is one of the major monitored rivers. The eXtreme Gradient Boosting (XGBoost) algorithm, a tree-based ensemble machine learning algorithm, was exploited to predict hourly water levels through the R programming language. Model training and testing were carried out utilizing observed hourly rainfall from the STH010 station and hourly water level data from the X.119A station between 2020 and 2022 as main prediction inputs. Furthermore, this model applies hourly spatial rainfall forecasting data from Weather Research and Forecasting and Regional Ocean Model System models (WRF-ROMs) provided by Hydro-Informatics Institute (HII) as input, allowing the model to predict the hourly water level in the Golok River. The evaluation of the predicted performances using the statistical performance metrics, delivering an R-square of 0.96 can validate the results as robust forecasting outcomes. The result shows that the predicted water level at the X.119A telemetry station (Golok River) is in a steady decline, which relates to the input data of predicted 72-hour rainfall from WRF-ROMs having decreased. In short, the relationship between input and result can be used to evaluate flood situations. Here, the data is contributed to the Operational support to the Special Water Resources Management Operation Center in Southern Thailand for flood preparedness and response to make intelligent decisions on water management during crisis occurrences, as well as to be prepared and prevent loss and harm to citizens.

  • PDF

Prediction of Ship Travel Time in Harbour using 1D-Convolutional Neural Network (1D-CNN을 이용한 항만내 선박 이동시간 예측)

  • Sang-Lok Yoo;Kwang-Il Ki;Cho-Young Jung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.275-276
    • /
    • 2022
  • VTS operators instruct ships to wait for entry and departure to sail in one-way to prevent ship collision accidents in ports with narrow routes. Currently, the instructions are not based on scientific and statistical data. As a result, there is a significant deviation depending on the individual capability of the VTS operators. Accordingly, this study built a 1d-convolutional neural network model by collecting ship and weather data to predict the exact travel time for ship entry/departure waiting for instructions in the port. It was confirmed that the proposed model was improved by more than 4.5% compared to other ensemble machine learning models. Through this study, it is possible to predict the time required to enter and depart a vessel in various situations, so it is expected that the VTS operators will help provide accurate information to the vessel and determine the waiting order.

  • PDF

Predictive Models for the Tourism and Accommodation Industry in the Era of Smart Tourism: Focusing on the COVID-19 Pandemic (스마트관광 시대의 관광숙박업 영업 예측 모형: 코로나19 팬더믹을 중심으로)

  • Yu Jin Jo;Cha Mi Kim;Seung Yeon Son;Mi Jin Noh
    • Smart Media Journal
    • /
    • v.12 no.8
    • /
    • pp.18-25
    • /
    • 2023
  • The COVID-19 outbreak in 2020 caused continuous damage worldwode, especially the smart tourism industry was hit directly by the blockade of sky roads and restriction of going out. At a time when overseas travel and domestic travel have decreased significantly, the number of tourist hotels that are colsed and closed due to the continued deficit is increasing. Therefore, in this study, licensing data from the Ministry of Public Administraion and Security were collected and visualized to understand the operation status of the tourism and lodging industry. The machine learning classification algorithm was applied to implement the business status prediction model of the tourist hotel, the performance of the prediction model was optimized using the ensemble algorithm, and the performance of the model was evaluated through 5-Fold cross-validation. It was predicted that the survival rate of tourist hotels would decrease somewhat, but the actual survival rate was analyzed to be no different from before COVID-19. Through the prediction of the business status of the hotel industry in this paper, it can be used as a basis for grasping the operability and development trends of the entire tourism and lodging industry.

Using Bayesian tree-based model integrated with genetic algorithm for streamflow forecasting in an urban basin

  • Nguyen, Duc Hai;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.140-140
    • /
    • 2021
  • Urban flood management is a crucial and challenging task, particularly in developed cities. Therefore, accurate prediction of urban flooding under heavy precipitation is critically important to address such a challenge. In recent years, machine learning techniques have received considerable attention for their strong learning ability and suitability for modeling complex and nonlinear hydrological processes. Moreover, a survey of the published literature finds that hybrid computational intelligent methods using nature-inspired algorithms have been increasingly employed to predict or simulate the streamflow with high reliability. The present study is aimed to propose a novel approach, an ensemble tree, Bayesian Additive Regression Trees (BART) model incorporating a nature-inspired algorithm to predict hourly multi-step ahead streamflow. For this reason, a hybrid intelligent model was developed, namely GA-BART, containing BART model integrating with Genetic algorithm (GA). The Jungrang urban basin located in Seoul, South Korea, was selected as a case study for the purpose. A database was established based on 39 heavy rainfall events during 2003 and 2020 that collected from the rain gauges and monitoring stations system in the basin. For the goal of this study, the different step ahead models will be developed based in the methods, including 1-hour, 2-hour, 3-hour, 4-hour, 5-hour, and 6-hour step ahead streamflow predictions. In addition, the comparison of the hybrid BART model with a baseline model such as super vector regression models is examined in this study. It is expected that the hybrid BART model has a robust performance and can be an optional choice in streamflow forecasting for urban basins.

  • PDF

Monitoring Ground-level SO2 Concentrations Based on a Stacking Ensemble Approach Using Satellite Data and Numerical Models (위성 자료와 수치모델 자료를 활용한 스태킹 앙상블 기반 SO2 지상농도 추정)

  • Choi, Hyunyoung;Kang, Yoojin;Im, Jungho;Shin, Minso;Park, Seohui;Kim, Sang-Min
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1053-1066
    • /
    • 2020
  • Sulfur dioxide (SO2) is primarily released through industrial, residential, and transportation activities, and creates secondary air pollutants through chemical reactions in the atmosphere. Long-term exposure to SO2 can result in a negative effect on the human body causing respiratory or cardiovascular disease, which makes the effective and continuous monitoring of SO2 crucial. In South Korea, SO2 monitoring at ground stations has been performed, but this does not provide spatially continuous information of SO2 concentrations. Thus, this research estimated spatially continuous ground-level SO2 concentrations at 1 km resolution over South Korea through the synergistic use of satellite data and numerical models. A stacking ensemble approach, fusing multiple machine learning algorithms at two levels (i.e., base and meta), was adopted for ground-level SO2 estimation using data from January 2015 to April 2019. Random forest and extreme gradient boosting were used as based models and multiple linear regression was adopted for the meta-model. The cross-validation results showed that the meta-model produced the improved performance by 25% compared to the base models, resulting in the correlation coefficient of 0.48 and root-mean-square-error of 0.0032 ppm. In addition, the temporal transferability of the approach was evaluated for one-year data which were not used in the model development. The spatial distribution of ground-level SO2 concentrations based on the proposed model agreed with the general seasonality of SO2 and the temporal patterns of emission sources.

Modeling and Selecting Optimal Features for Machine Learning Based Detections of Android Malwares (머신러닝 기반 안드로이드 모바일 악성 앱의 최적 특징점 선정 및 모델링 방안 제안)

  • Lee, Kye Woong;Oh, Seung Taek;Yoon, Young
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.11
    • /
    • pp.427-432
    • /
    • 2019
  • In this paper, we propose three approaches to modeling Android malware. The first method involves human security experts for meticulously selecting feature sets. With the second approach, we choose 300 features with the highest importance among the top 99% features in terms of occurrence rate. The third approach is to combine multiple models and identify malware through weighted voting. In addition, we applied a novel method of eliminating permission information which used to be regarded as a critical factor for distinguishing malware. With our carefully generated feature sets and the weighted voting by the ensemble algorithm, we were able to reach the highest malware detection accuracy of 97.8%. We also verified that discarding the permission information lead to the improvement in terms of false positive and false negative rates.

Assessing the Landslide Susceptibility of Cultural Heritages of Buyeo-gun, Chungcheongnam-do (충남 부여군 문화재의 산사태 민감성 평가)

  • Kim, Jun-Woo;Kim, Ho Gul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.5
    • /
    • pp.1-13
    • /
    • 2022
  • The damages caused by landslides are increasing worldwide due to climate change. In Korea, damages from landslides occur frequently, making it necessary to develop the effective response strategies. In particular, there is a lack of countermeasures against landslides in cultural heritage areas. The purpose of this study was to spatially analyze the relationship between Buyeo-gun's cultural heritage and landslide susceptible areas in Buyeo-gun, Chungcheongnam-do, which has a long history. Nine spatial distribution models were used to evaluate the landslide susceptibility, and the ensemble method was applied to reduce the uncertainty of individual model. There were 17 cultural heritages belonging to the landslide susceptible area. As a result of calculating the area ratio of the landslide susceptible area for cultural heritages, the cultural heritages with 100% of the area included in the landslide susceptible area were "Standing statue of Maae in Hongsan Sangcheon-ri" and "Statue of King Seonjo." More than 35% of "Jeungsanseong", "Garimseong", and "Standing stone statue of Maitreya Bodhisattva in Daejosa Temple" belonged to landslide susceptible areas. In order to effectively prevent landslide damage, the application of landslide prevention measures should be prioritized according to the proportion belonging to the landslide susceptible area. Since it is very difficult to restore cultural properties once destroyed, preventive measures are required before landslide damage occurs. The approach and results of this study provide basic data and guidelines for disaster response plans to prevent landslides in Buyeo-gun.

Prediction and Analysis of PM2.5 Concentration in Seoul Using Ensemble-based Model (앙상블 기반 모델을 이용한 서울시 PM2.5 농도 예측 및 분석)

  • Ryu, Minji;Son, Sanghun;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1191-1205
    • /
    • 2022
  • Particulate matter(PM) among air pollutants with complex and widespread causes is classified according to particle size. Among them, PM2.5 is very small in size and can cause diseases in the human respiratory tract or cardiovascular system if inhaled by humans. In order to prepare for these risks, state-centered management and preventable monitoring and forecasting are important. This study tried to predict PM2.5 in Seoul, where high concentrations of fine dust occur frequently, using two ensemble models, random forest (RF) and extreme gradient boosting (XGB) using 15 local data assimilation and prediction system (LDAPS) weather-related factors, aerosol optical depth (AOD) and 4 chemical factors as independent variables. Performance evaluation and factor importance evaluation of the two models used for prediction were performed, and seasonal model analysis was also performed. As a result of prediction accuracy, RF showed high prediction accuracy of R2 = 0.85 and XGB R2 = 0.91, and it was confirmed that XGB was a more suitable model for PM2.5 prediction than RF. As a result of the seasonal model analysis, it can be said that the prediction performance was good compared to the observed values with high concentrations in spring. In this study, PM2.5 of Seoul was predicted using various factors, and an ensemble-based PM2.5 prediction model showing good performance was constructed.