• 제목/요약/키워드: Ensemble Learning

검색결과 380건 처리시간 0.034초

입력자료 군집화에 따른 앙상블 머신러닝 모형의 수질예측 특성 연구 (The Effect of Input Variables Clustering on the Characteristics of Ensemble Machine Learning Model for Water Quality Prediction)

  • 박정수
    • 한국물환경학회지
    • /
    • 제37권5호
    • /
    • pp.335-343
    • /
    • 2021
  • Water quality prediction is essential for the proper management of water supply systems. Increased suspended sediment concentration (SSC) has various effects on water supply systems such as increased treatment cost and consequently, there have been various efforts to develop a model for predicting SSC. However, SSC is affected by both the natural and anthropogenic environment, making it challenging to predict SSC. Recently, advanced machine learning models have increasingly been used for water quality prediction. This study developed an ensemble machine learning model to predict SSC using the XGBoost (XGB) algorithm. The observed discharge (Q) and SSC in two fields monitoring stations were used to develop the model. The input variables were clustered in two groups with low and high ranges of Q using the k-means clustering algorithm. Then each group of data was separately used to optimize XGB (Model 1). The model performance was compared with that of the XGB model using the entire data (Model 2). The models were evaluated by mean squared error-ob servation standard deviation ratio (RSR) and root mean squared error. The RSR were 0.51 and 0.57 in the two monitoring stations for Model 2, respectively, while the model performance improved to RSR 0.46 and 0.55, respectively, for Model 1.

Development of ensemble machine learning models for evaluating seismic demands of steel moment frames

  • Nguyen, Hoang D.;Kim, JunHee;Shin, Myoungsu
    • Steel and Composite Structures
    • /
    • 제44권1호
    • /
    • pp.49-63
    • /
    • 2022
  • This study aims to develop ensemble machine learning (ML) models for estimating the peak floor acceleration and maximum top drift of steel moment frames. For this purpose, random forest, adaptive boosting, gradient boosting regression tree (GBRT), and extreme gradient boosting (XGBoost) models were considered. A total of 621 steel moment frames were analyzed under 240 ground motions using OpenSees software to generate the dataset for ML models. From the results, the GBRT and XGBoost models exhibited the highest performance for predicting peak floor acceleration and maximum top drift, respectively. The significance of each input variable on the prediction was examined using the best-performing models and Shapley additive explanations approach (SHAP). It turned out that the peak ground acceleration had the most significant impact on the peak floor acceleration prediction. Meanwhile, the spectral accelerations at 1 and 2 s had the most considerable influence on the maximum top drift prediction. Finally, a graphical user interface module was created that places a pioneering step for the application of ML to estimate the seismic demands of building structures in practical design.

Performance-based drift prediction of reinforced concrete shear wall using bagging ensemble method

  • Bu-Seog Ju;Shinyoung Kwag;Sangwoo Lee
    • Nuclear Engineering and Technology
    • /
    • 제55권8호
    • /
    • pp.2747-2756
    • /
    • 2023
  • Reinforced Concrete (RC) shear walls are one of the civil structures in nuclear power plants to resist lateral loads such as earthquakes and wind loads effectively. Risk-informed and performance-based regulation in the nuclear industry requires considering possible accidents and determining desirable performance on structures. As a result, rather than predicting only the ultimate capacity of structures, the prediction of performances on structures depending on different damage states or various accident scenarios have increasingly needed. This study aims to develop machine-learning models predicting drifts of the RC shear walls according to the damage limit states. The damage limit states are divided into four categories: the onset of cracking, yielding of rebars, crushing of concrete, and structural failure. The data on the drift of shear walls at each damage state are collected from the existing studies, and four regression machine-learning models are used to train the datasets. In addition, the bagging ensemble method is applied to improve the accuracy of the individual machine-learning models. The developed models are to predict the drifts of shear walls consisting of various cross-sections based on designated damage limit states in advance and help to determine the repairing methods according to damage levels to shear walls.

Enhancing prediction accuracy of concrete compressive strength using stacking ensemble machine learning

  • Yunpeng Zhao;Dimitrios Goulias;Setare Saremi
    • Computers and Concrete
    • /
    • 제32권3호
    • /
    • pp.233-246
    • /
    • 2023
  • Accurate prediction of concrete compressive strength can minimize the need for extensive, time-consuming, and costly mixture optimization testing and analysis. This study attempts to enhance the prediction accuracy of compressive strength using stacking ensemble machine learning (ML) with feature engineering techniques. Seven alternative ML models of increasing complexity were implemented and compared, including linear regression, SVM, decision tree, multiple layer perceptron, random forest, Xgboost and Adaboost. To further improve the prediction accuracy, a ML pipeline was proposed in which the feature engineering technique was implemented, and a two-layer stacked model was developed. The k-fold cross-validation approach was employed to optimize model parameters and train the stacked model. The stacked model showed superior performance in predicting concrete compressive strength with a correlation of determination (R2) of 0.985. Feature (i.e., variable) importance was determined to demonstrate how useful the synthetic features are in prediction and provide better interpretability of the data and the model. The methodology in this study promotes a more thorough assessment of alternative ML algorithms and rather than focusing on any single ML model type for concrete compressive strength prediction.

Comparative analysis of model performance for predicting the customer of cafeteria using unstructured data

  • Seungsik Kim;Nami Gu;Jeongin Moon;Keunwook Kim;Yeongeun Hwang;Kyeongjun Lee
    • Communications for Statistical Applications and Methods
    • /
    • 제30권5호
    • /
    • pp.485-499
    • /
    • 2023
  • This study aimed to predict the number of meals served in a group cafeteria using machine learning methodology. Features of the menu were created through the Word2Vec methodology and clustering, and a stacking ensemble model was constructed using Random Forest, Gradient Boosting, and CatBoost as sub-models. Results showed that CatBoost had the best performance with the ensemble model showing an 8% improvement in performance. The study also found that the date variable had the greatest influence on the number of diners in a cafeteria, followed by menu characteristics and other variables. The implications of the study include the potential for machine learning methodology to improve predictive performance and reduce food waste, as well as the removal of subjective elements in menu classification. Limitations of the research include limited data cases and a weak model structure when new menus or foreign words are not included in the learning data. Future studies should aim to address these limitations.

적록색맹 모사 영상 데이터를 이용한 딥러닝 기반의 위장군인 객체 인식 성능 향상 (Performance Improvement of a Deep Learning-based Object Recognition using Imitated Red-green Color Blindness of Camouflaged Soldier Images)

  • 최근하
    • 한국군사과학기술학회지
    • /
    • 제23권2호
    • /
    • pp.139-146
    • /
    • 2020
  • The camouflage pattern was difficult to distinguish from the surrounding background, so it was difficult to classify the object and the background image when the color image is used as the training data of deep-learning. In this paper, we proposed a red-green color blindness image transformation method using the principle that people of red-green blindness distinguish green color better than ordinary people. Experimental results show that the camouflage soldier's recognition performance improved by proposed a deep learning model of the ensemble technique using the imitated red-green-blind image data and the original color image data.

앙상블 딥러닝을 이용한 초음파 영상의 간병변증 분류 알고리즘 (Classification Algorithm for Liver Lesions of Ultrasound Images using Ensemble Deep Learning)

  • 조영복
    • 한국인터넷방송통신학회논문지
    • /
    • 제20권4호
    • /
    • pp.101-106
    • /
    • 2020
  • 현재 의료 현장에서 초음파 진단은 과거 청진기와 같다고 할 수 있다. 그러나 초음파의 특성상 검사자의 숙련도에 따라 결과 예측이 불확실하다는 단점을 가진다. 따라서 본 논문에서는 이런 문제를 해결하기 위해 딥러닝 기술을 기반으로 초음파 검사 중 간병변 탐지의 정확도를 높이고자 한다. 제안 논문에서는 CNN 모델과 앙상블 모델을 이용해 병변 분류의 정확도 비교 실험하였다. 실험결과 CNN 모델에서 분류 정확도는 평균 82.33%에서 앙상블모델의 경우 평균 89.9%로 약 7% 높은 것을 확인하였다. 또한 앙상블 모델이 평균 ROC커브에서도 0.97로 CNN모델보다 약 0.4정도 높은 것을 확인하였다.

앙상블 학습 기반 국내 도서의 해외 판매 굿셀러 예측 및 굿셀러 리뷰 키워드 분석 (Ensemble Learning-Based Prediction of Good Sellers in Overseas Sales of Domestic Books and Keyword Analysis of Reviews of the Good Sellers)

  • 김도영;김나연;김현희
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권4호
    • /
    • pp.173-178
    • /
    • 2023
  • 한국 문학이 세계적으로 관심을 받게 됨에 따라 해외 출판시장에서의 수요가 지속적으로 증가하고 있다. 따라서 해외 출판시 도서 판매량의 예측과 과거 해외 독자들의 선호도가 높았던 도서들의 특징을 분석하는 것이 중요하다. 본 논문에서는 최근 5년간 해외 출간된 도서 중에서 굿셀러로 분류되는 누적 5천 부 이상 판매 여부 예측 모델을 제안하고 굿셀러의 요인이 되는 변수들을 분석하였다. 이를 위해, XGBoost, Gradient Boosting, Adaboost, LightGBM, Random Forest의 다섯 개 앙상블 학습 모델과 Support Vector Machine, Logistic Regression, Deep Learning을 적용한 결과, 불균형 데이터 문제 해결에 앙상블 알고리즘이 큰 효과를 보였음을 확인했으며, 그 중에서도 LightGMB 모델이 99.86%의 AUC 값을 얻어 가장 좋은 예측 성능을 보임을 검증하였다. 예측을 위해 사용된 변수 중 가장 중요한 변수는 작가의 해외 출간 횟수로 나타났으며, 평점 평균, 상위 출판 시장 규모를 가진 국가에서 출판 여부와 평점 참여자 수 등이 중요한 변수로 나타났다. 또한, 굿셀러 도서에 대한 독자들의 반응을 분석하기 위해서, 굿셀러 도서 중에서도 가장 많이 판매된 4권의 작품 리뷰에 대해 텍스트 마이닝을 실시하였다. 분석 결과 스토리, 등장인물, 작가 순으로 관심을 둔 리뷰가 많았음을 알 수 있었으며, 평점이 낮은 리뷰로부터 번역 키워드가 도출된 것으로 보아, 번역에 대한 지원을 확대하는 것이 필요할 것으로 보인다.

Mini-Batch Ensemble Method on Keystroke Dynamics based User Authentication

  • Ho, Jiacang;Kang, Dae-Ki
    • International journal of advanced smart convergence
    • /
    • 제5권3호
    • /
    • pp.40-46
    • /
    • 2016
  • The internet allows the information to flow at anywhere in anytime easily. Unfortunately, the network also becomes a great tool for the criminals to operate cybercrimes such as identity theft. To prevent the issue, using a very complex password is not a very encouraging method. Alternatively, keystroke dynamics helps the user to solve the problem. Keystroke dynamics is the information of timing details when a user presses a key or releases a key. A machine can learn a user typing behavior from the information integrate with a proper machine learning algorithm. In this paper, we have proposed mini-batch ensemble (MIBE) method which does the preprocessing on the original dataset and then produces multiple mini batches in the end. The mini batches are then trained by a machine learning algorithm. From the experimental result, we have shown the improvement of the performance for each base algorithm.

Predicting movie audience with stacked generalization by combining machine learning algorithms

  • Park, Junghoon;Lim, Changwon
    • Communications for Statistical Applications and Methods
    • /
    • 제28권3호
    • /
    • pp.217-232
    • /
    • 2021
  • The Korea film industry has matured and the number of movie-watching per capita has reached the highest level in the world. Since then, movie industry growth rate is decreasing and even the total sales of movies per year slightly decreased in 2018. The number of moviegoers is the first factor of sales in movie industry and also an important factor influencing additional sales. Thus it is important to predict the number of movie audiences. In this study, we predict the cumulative number of audiences of films using stacking, an ensemble method. Stacking is a kind of ensemble method that combines all the algorithms used in the prediction. We use box office data from Korea Film Council and web comment data from Daum Movie (www.movie.daum.net). This paper describes the process of collecting and preprocessing of explanatory variables and explains regression models used in stacking. Final stacking model outperforms in the prediction of test set in terms of RMSE.