• 제목/요약/키워드: Ensemble Learning

검색결과 388건 처리시간 0.021초

Pareto RBF network ensemble using multi-objective evolutionary computation

  • Kondo, Nobuhiko;Hatanaka, Toshiharu;Uosaki, Katsuji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.925-930
    • /
    • 2005
  • In this paper, evolutionary multi-objective selection method of RBF networks structure is considered. The candidates of RBF network structure are encoded into the chromosomes in GAs. Then, they evolve toward Pareto-optimal front defined by several objective functions concerning with model accuracy and model complexity. An ensemble network constructed by such Pareto-optimal models is also considered in this paper. Some numerical simulation results indicate that the ensemble network is much robust for the case of existence of outliers or lack of data, than one selected in the sense of information criteria.

  • PDF

Heterogeneous Ensemble of Classifiers from Under-Sampled and Over-Sampled Data for Imbalanced Data

  • Kang, Dae-Ki;Han, Min-gyu
    • International journal of advanced smart convergence
    • /
    • 제8권1호
    • /
    • pp.75-81
    • /
    • 2019
  • Data imbalance problem is common and causes serious problem in machine learning process. Sampling is one of the effective methods for solving data imbalance problem. Over-sampling increases the number of instances, so when over-sampling is applied in imbalanced data, it is applied to minority instances. Under-sampling reduces instances, which usually is performed on majority data. We apply under-sampling and over-sampling to imbalanced data and generate sampled data sets. From the generated data sets from sampling and original data set, we construct a heterogeneous ensemble of classifiers. We apply five different algorithms to the heterogeneous ensemble. Experimental results on an intrusion detection dataset as an imbalanced datasets show that our approach shows effective results.

Melanoma Classification Using Log-Gabor Filter and Ensemble of Deep Convolution Neural Networks

  • Long, Hoang;Lee, Suk-Hwan;Kwon, Seong-Geun;Kwon, Ki-Ryong
    • 한국멀티미디어학회논문지
    • /
    • 제25권8호
    • /
    • pp.1203-1211
    • /
    • 2022
  • Melanoma is a skin cancer that starts in pigment-producing cells (melanocytes). The death rates of skin cancer like melanoma can be reduced by early detection and diagnosis of diseases. It is common for doctors to spend a lot of time trying to distinguish between skin lesions and healthy cells because of their striking similarities. The detection of melanoma lesions can be made easier for doctors with the help of an automated classification system that uses deep learning. This study presents a new approach for melanoma classification based on an ensemble of deep convolution neural networks and a Log-Gabor filter. First, we create the Log-Gabor representation of the original image. Then, we input the Log-Gabor representation into a new ensemble of deep convolution neural networks. We evaluated the proposed method on the melanoma dataset collected at Yonsei University and Dongsan Clinic. Based on our numerical results, the proposed framework achieves more accuracy than other approaches.

Classification for Imbalanced Breast Cancer Dataset Using Resampling Methods

  • Hana Babiker, Nassar
    • International Journal of Computer Science & Network Security
    • /
    • 제23권1호
    • /
    • pp.89-95
    • /
    • 2023
  • Analyzing breast cancer patient files is becoming an exciting area of medical information analysis, especially with the increasing number of patient files. In this paper, breast cancer data is collected from Khartoum state hospital, and the dataset is classified into recurrence and no recurrence. The data is imbalanced, meaning that one of the two classes have more sample than the other. Many pre-processing techniques are applied to classify this imbalanced data, resampling, attribute selection, and handling missing values, and then different classifiers models are built. In the first experiment, five classifiers (ANN, REP TREE, SVM, and J48) are used, and in the second experiment, meta-learning algorithms (Bagging, Boosting, and Random subspace). Finally, the ensemble model is used. The best result was obtained from the ensemble model (Boosting with J48) with the highest accuracy 95.2797% among all the algorithms, followed by Bagging with J48(90.559%) and random subspace with J48(84.2657%). The breast cancer imbalanced dataset was classified into recurrence, and no recurrence with different classified algorithms and the best result was obtained from the ensemble model.

BERT-Based Logits Ensemble Model for Gender Bias and Hate Speech Detection

  • Sanggeon Yun;Seungshik Kang;Hyeokman Kim
    • Journal of Information Processing Systems
    • /
    • 제19권5호
    • /
    • pp.641-651
    • /
    • 2023
  • Malicious hate speech and gender bias comments are common in online communities, causing social problems in our society. Gender bias and hate speech detection has been investigated. However, it is difficult because there are diverse ways to express them in words. To solve this problem, we attempted to detect malicious comments in a Korean hate speech dataset constructed in 2020. We explored bidirectional encoder representations from transformers (BERT)-based deep learning models utilizing hyperparameter tuning, data sampling, and logits ensembles with a label distribution. We evaluated our model in Kaggle competitions for gender bias, general bias, and hate speech detection. For gender bias detection, an F1-score of 0.7711 was achieved using an ensemble of the Soongsil-BERT and KcELECTRA models. The general bias task included the gender bias task, and the ensemble model achieved the best F1-score of 0.7166.

Ensemble Gene Selection Method Based on Multiple Tree Models

  • Mingzhu Lou
    • Journal of Information Processing Systems
    • /
    • 제19권5호
    • /
    • pp.652-662
    • /
    • 2023
  • Identifying highly discriminating genes is a critical step in tumor recognition tasks based on microarray gene expression profile data and machine learning. Gene selection based on tree models has been the subject of several studies. However, these methods are based on a single-tree model, often not robust to ultra-highdimensional microarray datasets, resulting in the loss of useful information and unsatisfactory classification accuracy. Motivated by the limitations of single-tree-based gene selection, in this study, ensemble gene selection methods based on multiple-tree models were studied to improve the classification performance of tumor identification. Specifically, we selected the three most representative tree models: ID3, random forest, and gradient boosting decision tree. Each tree model selects top-n genes from the microarray dataset based on its intrinsic mechanism. Subsequently, three ensemble gene selection methods were investigated, namely multipletree model intersection, multiple-tree module union, and multiple-tree module cross-union, were investigated. Experimental results on five benchmark public microarray gene expression datasets proved that the multiple tree module union is significantly superior to gene selection based on a single tree model and other competitive gene selection methods in classification accuracy.

환자 IQR 이상치와 상관계수 기반의 머신러닝 모델을 이용한 당뇨병 예측 메커니즘 (Diabetes prediction mechanism using machine learning model based on patient IQR outlier and correlation coefficient)

  • 정주호;이나은;김수민;서가은;오하영
    • 한국정보통신학회논문지
    • /
    • 제25권10호
    • /
    • pp.1296-1301
    • /
    • 2021
  • 최근 전 세계적으로 당뇨병 유발률이 증가함에 따라 다양한 머신러닝과 딥러닝 기술을 통해 당뇨병을 예측하려고 는 연구가 이어지고 있다. 본 연구에서는 독일의 Frankfurt Hospital 데이터로 머신러닝 기법을 활용하여 당뇨병을 예측하는 모델을 제시한다. IQR(Interquartile Range) 기법을 이용한 이상치 처리와 피어슨 상관관계 분석을 적용하고 Decision Tree, Random Forest, Knn, SVM, 앙상블 기법인 XGBoost, Voting, Stacking로 모델별 당뇨병 예측 성능을 비교한다. 연구를 진행한 결과 Stacking ensemble 기법의 정확도가 98.75%로 가장 뛰어난 성능을 보였다. 따라서 해당 모델을 이용하여 현대 사회에 만연한 당뇨병을 정확히 예측하고 예방할 수 있다는 점에서 본 연구는 의의가 있다.

미세먼지, 악취 농도 예측을 위한 앙상블 방법 (Ensemble Method for Predicting Particulate Matter and Odor Intensity)

  • 이종영;최명진;주영인;양재경
    • 산업경영시스템학회지
    • /
    • 제42권4호
    • /
    • pp.203-210
    • /
    • 2019
  • Recently, a number of researchers have produced research and reports in order to forecast more exactly air quality such as particulate matter and odor. However, such research mainly focuses on the atmospheric diffusion models that have been used for the air quality prediction in environmental engineering area. Even though it has various merits, it has some limitation in that it uses very limited spatial attributes such as geographical attributes. Thus, we propose the new approach to forecast an air quality using a deep learning based ensemble model combining temporal and spatial predictor. The temporal predictor employs the RNN LSTM and the spatial predictor is based on the geographically weighted regression model. The ensemble model also uses the RNN LSTM that combines two models with stacking structure. The ensemble model is capable of inferring the air quality of the areas without air quality monitoring station, and even forecasting future air quality. We installed the IoT sensors measuring PM2.5, PM10, H2S, NH3, VOC at the 8 stations in Jeonju in order to gather air quality data. The numerical results showed that our new model has very exact prediction capability with comparison to the real measured data. It implies that the spatial attributes should be considered to more exact air quality prediction.

부도예측을 위한 KNN 앙상블 모형의 동시 최적화 (Investigating Dynamic Mutation Process of Issues Using Unstructured Text Analysis)

  • 민성환
    • 지능정보연구
    • /
    • 제22권1호
    • /
    • pp.139-157
    • /
    • 2016
  • 앙상블 분류기란 개별 분류기보다 더 좋은 성과를 내기 위해 다수의 분류기를 결합하는 것을 의미한다. 이와 같은 앙상블 분류기는 단일 분류기의 일반화 성능을 향상시키는데 매우 유용한 것으로 알려져 있다. 랜덤 서브스페이스 앙상블 기법은 각각의 기저 분류기들을 위해 원 입력 변수 집합으로부터 랜덤하게 입력 변수 집합을 선택하며 이를 통해 기저 분류기들을 다양화 시키는 기법이다. k-최근접 이웃(KNN: k nearest neighbor)을 기저 분류기로 하는 랜덤 서브스페이스 앙상블 모형의 성과는 단일 모형의 성과를 개선시키는 데 효과적인 것으로 알려져 있으며, 이와 같은 랜덤 서브스페이스 앙상블의 성과는 각 기저 분류기를 위해 랜덤하게 선택된 입력 변수 집합과 KNN의 파라미터 k의 값이 중요한 영향을 미친다. 하지만, 단일 모형을 위한 k의 최적 선택이나 단일 모형을 위한 입력 변수 집합의 최적 선택에 관한 연구는 있었지만 KNN을 기저 분류기로 하는 앙상블 모형에서 이들의 최적화와 관련된 연구는 없는 것이 현실이다. 이에 본 연구에서는 KNN을 기저 분류기로 하는 앙상블 모형의 성과 개선을 위해 각 기저 분류기들의 k 파라미터 값과 입력 변수 집합을 동시에 최적화하는 새로운 형태의 앙상블 모형을 제안하였다. 본 논문에서 제안한 방법은 앙상블을 구성하게 될 각각의 KNN 기저 분류기들에 대해 최적의 앙상블 성과가 나올 수 있도록 각각의 기저 분류기가 사용할 파라미터 k의 값과 입력 변수를 유전자 알고리즘을 이용해 탐색하였다. 제안한 모형의 검증을 위해 국내 기업의 부도 예측 관련 데이터를 가지고 다양한 실험을 하였으며, 실험 결과 제안한 모형이 기존의 앙상블 모형보다 기저 분류기의 다양화와 예측 성과 개선에 효과적임을 알 수 있었다.

선형변수 기계학습 기법을 활용한 저속비대선의 잉여저항계수 추정 (Prediction of Residual Resistance Coefficient of Low-Speed Full Ships Using Hull Form Variables and Machine Learning Approaches)

  • 김유철;양경규;김명수;이영연;김광수
    • 대한조선학회논문집
    • /
    • 제57권6호
    • /
    • pp.312-321
    • /
    • 2020
  • In this study, machine learning techniques were applied to predict the residual resistance coefficient (Cr) of low-speed full ships. The used machine learning methods are Ridge regression, support vector regression, random forest, neural network and their ensemble model. 19 hull form variables were used as input variables for machine learning methods. The hull form variables and Cr data obtained from 139 hull forms of KRISO database were used in analysis. 80 % of the total data were used as training models and the rest as validation. Some non-linear models showed the overfitted results and the ensemble model showed better results than others.