• Title/Summary/Keyword: Ensemble EMD

Search Result 7, Processing Time 0.024 seconds

Data-Driven Signal Decomposition using Improved Ensemble EMD Method (개선된 앙상블 EMD 방법을 이용한 데이터 기반 신호 분해)

  • Lee, Geum-Boon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.279-286
    • /
    • 2015
  • EMD is a fully data-driven signal processing method without using any predetermined basis function and requiring any user parameters setting. However EMD experiences a problem of mode mixing which interferes with decomposing the signal into similar oscillations within a mode. To overcome the problem, EEMD method was introduced. The algorithm performs the EMD method over an ensemble of the signal added independent identically distributed white noise of the same standard deviation. Even so EEMD created problems when the decomposition is complete. The ensemble of different signal with added noise may produce different number of modes and the reconstructed signal includes residual noise. This paper propose an modified EEMD method to overcome mode mixing of EMD, to provide an exact reconstruction of the original signal, and to separate modes with lower cost than EEMD's. The experimental results show that the proposed method provides a better separation of the modes with less number of sifting iterations, costs 20.87% for a complete decomposition of the signal and demonstrates superior performance in the signal reconstruction, compared with EEMD.

A Climate Prediction Method Based on EMD and Ensemble Prediction Technique

  • Bi, Shuoben;Bi, Shengjie;Chen, Xuan;Ji, Han;Lu, Ying
    • Asia-Pacific Journal of Atmospheric Sciences
    • /
    • v.54 no.4
    • /
    • pp.611-622
    • /
    • 2018
  • Observed climate data are processed under the assumption that their time series are stationary, as in multi-step temperature and precipitation prediction, which usually leads to low prediction accuracy. If a climate system model is based on a single prediction model, the prediction results contain significant uncertainty. In order to overcome this drawback, this study uses a method that integrates ensemble prediction and a stepwise regression model based on a mean-valued generation function. In addition, it utilizes empirical mode decomposition (EMD), which is a new method of handling time series. First, a non-stationary time series is decomposed into a series of intrinsic mode functions (IMFs), which are stationary and multi-scale. Then, a different prediction model is constructed for each component of the IMF using numerical ensemble prediction combined with stepwise regression analysis. Finally, the results are fit to a linear regression model, and a short-term climate prediction system is established using the Visual Studio development platform. The model is validated using temperature data from February 1957 to 2005 from 88 weather stations in Guangxi, China. The results show that compared to single-model prediction methods, the EMD and ensemble prediction model is more effective for forecasting climate change and abrupt climate shifts when using historical data for multi-step prediction.

A hybrid algorithm based on EEMD and EMD for multi-mode signal processing

  • Lin, Jeng-Wen
    • Structural Engineering and Mechanics
    • /
    • v.39 no.6
    • /
    • pp.813-831
    • /
    • 2011
  • This paper presents an efficient version of Hilbert-Huang transform for nonlinear non-stationary systems analyses. An ensemble empirical mode decomposition (EEMD) is introduced to alleviate the problem of mode mixing between intrinsic mode functions (IMFs) decomposed by EMD. Yet the problem has not been fully resolved when a signal of a similar scale resides in different IMF components. Instead of using a trial and error method to select the "best" outcome generated by EEMD, a hybrid algorithm based on EEMD and EMD is proposed for multi-mode signal processing. The developed approach comprises the steps from a bandpass filter design for regrouping modes of the IMFs obtained from EEMD, to the mode extraction using EMD, and to the assessment of each mode in the marginal spectrum. A simulated two-mode signal is tested to demonstrate the efficiency and robustness of the approach, showing average relative errors all equal to 1.46% for various noise levels added to the signal. The developed approach is also applied to a real bridge structure, showing more reliable results than the pure EMD. Discussions on the mode determination are offered to explain the connection between modegrouping form on the one hand, and mode-grouping performance on the other.

Condition Monitoring of Low Speed Slewing Bearings Based on Ensemble Empirical Mode Decomposition Method

  • Caesarendra, W.;Park, J.H.;Choi, B.H.;Kosasih, P.B.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.388-393
    • /
    • 2012
  • Vibration condition monitoring at low rotational speeds is still a challenge. Acoustic emission (AE) is the most used technique when dealing with low speed bearings. At low rotational speeds, the energy induced from surface contact between raceway and rolling elements is very weak and sometimes buried by interference frequencies. This kind of issue is difficult to solve using vibration monitoring. Therefore some researchers utilize artificial damage on inner race or outer race to simplify the case. This paper presents vibration signal analysis of low speed slewing bearings running at a low rotational speed of 15 rpm. The natural damage data from industrial practice is used. The fault frequencies of bearings are difficult to identify using a power spectrum. Therefore the relatively improved method of empirical mode decomposition (EMD), ensemble EMD (EEMD) is employed. The result is can detect the fault frequencies when the FFT fail to do it.

  • PDF

Intrinsic Mode Function and its Orthogonality of the Ensemble Empirical Mode Decomposition Using Orthogonalization Method (직교화 기법을 이용한 앙상블 경험적 모드 분해법의 고유 모드 함수와 모드 직교성)

  • Shon, Sudeok;Ha, Junhong;Pokhrel, Bijaya P.;Lee, Seungjae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.2
    • /
    • pp.101-108
    • /
    • 2019
  • In this paper, the characteristic of intrinsic mode function(IMF) and its orthogonalization of ensemble empirical mode decomposition(EEMD), which is often used in the analysis of the non-linear or non-stationary signal, has been studied. In the decomposition process, the orthogonal IMF of EEMD was obtained by applying the Gram-Schmidt(G-S) orthogonalization method, and was compared with the IMF of orthogonal EMD(OEMD). Two signals for comparison analysis are adopted as the analytical test function and El Centro seismic wave. These target signals were compared by calculating the index of orthogonality(IO) and the spectral energy of the IMF. As a result of the analysis, an IMF with a high IO was obtained by GSO method, and the orthogonal EEMD using white noise was decomposed into orthogonal IMF with energy closer to the original signal than conventional OEMD.

Applications of the improved Hilbert-Huang transform method to the detection of thermo-acoustic instabilities (열음향학적 불안정성 검출에 대한 개선된 힐버트-후앙 변환의 적용)

  • Cha, Ji-Hyeong;Kim, Young-Seok;Ko, Sang-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.555-561
    • /
    • 2012
  • The Hilbert Huang Transform (HHT) technigue with Empirical Mode Decomposition (EMD) is one of the time-frequency domain analysis methods and it has several advantages such that analyzing non-stationary and nonlinear signal is possible. However, there are shortcomings in detecting near-range of frequencies and added noise signals. In this paper, to analyze characteristics of each method, HHT and Short-Time Fourier Transform (STFT) effective in dealing with stationary signals are compared. And with thermoacoustic instabilities signals from a Rijke tube test, HHT and the improved HHT with Ensemble Empirical Mode Decomposition (EEMD) are compared. The results show that the improved HHT is more appropriate than the original HHT due to the relative insensitivity to noise. Therefore it will result in more accurate analysis.

  • PDF

Condition Monitoring of Low Speed Slewing Bearings Based on Ensemble Empirical Mode Decomposition Method (EEMD법을 이용한 저속 선회베어링 상태감시)

  • Caesarendra, W.;Park, J.H.;Kosasih, P.B.;Choi, B.K.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.2
    • /
    • pp.131-143
    • /
    • 2013
  • Vibration condition monitoring of low-speed rotational slewing bearings is essential ever since it became necessary for a proper maintenance schedule that replaces the slewing bearings installed in massive machinery in the steel industry, among other applications. So far, acoustic emission(AE) is still the primary technique used for dealing with low-speed bearing cases. Few studies employed vibration analysis because the signal generated as a result of the impact between the rolling element and the natural defect spots at low rotational speeds is generally weak and sometimes buried in noise and other interference frequencies. In order to increase the impact energy, some researchers generate artificial defects with a predetermined length, width, and depth of crack on the inner or outer race surfaces. Consequently, the fault frequency of a particular fault is easy to identify. This paper presents the applications of empirical mode decomposition(EMD) and ensemble empirical mode decomposition(EEMD) for measuring vibration signals slewing bearings running at a low rotational speed of 15 rpm. The natural vibration damage data used in this paper are obtained from a Korean industrial company. In this study, EEMD is used to support and clarify the results of the fast Fourier transform(FFT) in identifying bearing fault frequencies.