• Title/Summary/Keyword: Enriched sediment

Search Result 72, Processing Time 0.029 seconds

Potential Meso-scale Coupling of Benthic-Pelagic Production in the Northeast Equatorial Pacific (북동 적도 태평양에서 수층 기초 생산력과 심해저 퇴적물내 미생물 생산력과의 상관성)

  • Kim, Kyeong-Hong;Son, Ju-Won;Son, Seung-Kyu;Chi, Sang-Bum;Hyun, Jung-Ho
    • Ocean and Polar Research
    • /
    • v.33 no.1
    • /
    • pp.21-34
    • /
    • 2011
  • We determined potential meso-scale benthic-pelagic ecosystem coupling in the north equatorial Pacific by comparing surface chl-a concentration with sediment bacterial abundance and adenosine triphosphate (ATP) concentration (indication of active biomass). Water and sediment samples were latitudinally collected between 5 and $11^{\circ}N$ along $131.5^{\circ}W$. Physical water properties of this area are characterized with three major currents: North Equatorial Current (NEC), North Equatorial Count Current (NECC), and South Equatorial Current (SEC). The divergence and convergence of the surface water occur at the boundaries where these currents anti-flow. This low latitude area ($5{\sim}7^{\circ}N$) appears to show high pelagic productivity (mean phytoplankton biomass=$1266.0\;mgC\;m^{-2}$) due to the supplement of high nutrients from nutrient-enriched deep-water via vertical mixing. But the high latitude area ($9{\sim}11^{\circ}N$) with the strong stratification exhibits low surface productivity (mean phytoplankton biomass=$603.1\;mgC\;m^{-2}$). Bacterial cell number (BCN) and ATP appeared to be the highest at the superficial layer and reduced with depth of sediment. Latitudinally, sediment BCN from low latitude ($5{\sim}7^{\circ}N$) was $9.8{\times}10^8\;cells\;cm^{-2}$, which appeared to be 3-times higher than that from high latitude ($9{\sim}11^{\circ}N$; $2.9{\times}10^8\;cells\;cm^{-2}$). Furthermore, sedimentary ATP at the low latitude ($56.2\;ng\;cm^{-2}$) appeared to be much higher than that of the high latitude ($3.3\;ng\;cm^{-2}$). According to regression analysis of these data, more than 85% of the spatial variation of benthic microbial biomass was significantly explained by the phytoplankton biomass in surface water. Therefore, the results of this study suggest that benthic productivity in this area is strongly coupled with pelagic productivity.

Characteristics of Element Geochemistry in Ulleung Basin Sediments During the Late Quaternary (제4기 후기 동안 동해 울릉분지 퇴적물내 원소 함량 특성과 기원지 연구)

  • Um, In-Kwon;Choi, Man-Sik;Shin, Hyung-Sun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.2
    • /
    • pp.69-79
    • /
    • 2009
  • Major and trace elements were analyzed in three core sediments to investigate geochemical characteristics of East Sea sediments and provenance changes during late Quaternary in Ulleung Basin. Comparing with Yellow and South Sea sediments, contents of major elements were generally similar while contents of trace elements were significantly different. Furthermore, within this basin, there were some variabilities in trace element compositions. In the western slope sediments (WS), Mo was enriched over 6 times as much as other sites. On the other hand, Zr, Nb, Hf and Ta were enriched in basin sediments (Basin), and Ca and Cs were enriched in southern slope sediments (SS). After excluding elements derived from biogenic, authigenic and diagenetic origins, the lithogenic elements (K, Ti, Cs, Zr, Nb, Hf and Ta) could be classified into three groups from the comparison of element/Al ratios among cores. The first group consisted of elements (K and Ti) that showed the nearly similar element/Al ratios among three cores. The second group contained Cs which showed significant difference between two slope sediments. The third group elements (Zr, Nb, Hf and Ta) showed highly enriched in basin relative to both slope areas. The depth profiles of metal/Al ratios in basin sediments provided the following interpretation for the compositions of sediment and their variation. From 10,000 yr B.P. to 7,000 yr B.P. two lithogenic components (volcanic ashes and western slope sediments) were mixed and deposited in the basin. After 7,000 yr B.P., however, southern slope sediments were mixed with volcanic ashes and deposited in basin area. This event of source change is nearly close to inflow period of the Tsushima Warm Current to Ulleung Basin. Thus, it might be suggested that element geochemistry in Ulleung basin sediment indicate the change of current system in the study area.

Organic Matter Cycle by Biogeochemical Indicator in Tidal Mud Flat, West Coast of Korea (생지화학적 지표를 이용한 서해안 갯벌 퇴적층에서의 유기물 순환에 관한 연구)

  • Lee, Dong-Hun;Lee, Jun-Ho;Jeong, Kap-Sik;Woo, Han Jun;Kang, Jeongwon;Shin, Kyung-Hoon;Ha, Sun-Yong
    • Ocean and Polar Research
    • /
    • v.36 no.1
    • /
    • pp.25-37
    • /
    • 2014
  • To understand the degradation processes of organic matter related to sulfate reduction by Sulfate Reduction Bacteria (SRB) in the tidal flat sediments of Hwang-do and Sogeun-ri, Tae-an Peninsula in Chungnam-do, biogeochemical characteristics were analyzed and highlighted using specific microbial biomarkers. The organic geochemical parameters (TOC, ${\delta}^{13}C_{org}$, C/N ratio, long-chain-n-alkane) indicate that most of the organic matter has been derived from marine phytoplankton and bacteria in the fine-grained sediment of Sogeun-ri, although terrestrial plant components have occasionally been incorporated to a significant degree in the coarse-grained sediment of Hwang-do. The concentration of sulfate in pore water is a constant tendency with regard to depth profile, while methane concentration appears to be slightly different with regard to depth profile at the two sites. Especially, the sum of bacteria fatty acid (a-C15:0 + i-C15:0 + C16:1w5) confirms that the these concentrations in Sogeun-ri are related to the degradation of Benzene, Toluene, Ethylbenzene and Xylene (BTEX) compounds from the crude oil retained in the sediments as a result of the Hebei Spirit oil-spill accident in 2007. The methane-related microbial communities as shown by lipid biomarkers (crocetane, PMI) are larger in some sedimentary sections of Hwang-do than in the Sogeunri tidal flat. These findings suggest that methane production by microbiological processes is clearly governed by SRB activity along the vertical succession in organic-enriched tidal flats.

Spatio-temporal Distributions of Polychaete Communities and Benthic Environmental Characteristics of the Harbor Area of Busan Port, Korea (부산항 주변 저서다모류군집의 시.공간 분포와 저서환경의 특징)

  • Jung, Rae-Hong;Yoon, Sang-Pil;Kim, Youn-Jung;Choi, Min-Kyu;Lee, Won-Chan
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.3
    • /
    • pp.125-138
    • /
    • 2011
  • This study was conducted to investigate the benthic condition around Busan Port by analysing spatio-temporal distribution pattern of polychaete community and some benthic environmental factors. Field survey was seasonally carried out at 15 stations covering in and outside of Busan Port from February to December, 2007. Water temperature, salinity and the type of surface sediment showed little changes among the stations, but factors related to organic enrichment such as TOC, AVS, coprostanol showed an obvious contrast, especially between in and outside of Busan Port. A total of96 species occurred and mean density was 1,814 ind./$m^2$. Species richness was higher at outer port than inner port, but density was higher at inner port. Dominant species were Aphelochaeta monilaris, Magelona japonica, Pseudopolydora paucibranchiata, etc. and many of them were typical species of organically enriched area. From the multivariate analyses, the whole study area was composed of two distinct polychaete communities located at the inside and outside of the port, and seasonal changes didn't have any influential effects on the structure. Coprostanol and AVS, indicators of organically enriched condition, well explained the community structures of polychaete worms in the vicinity of Busan Port. In this context, the innermost area of North Harbor was in a highly enriched state.

Trophic transfer of organochlorine pesticides through food-chain in coastal marine ecosystem

  • Kim, Seung-Kyu
    • Environmental Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.43-51
    • /
    • 2020
  • The present study was designed to characterize the bioaccumulation of organochlorine pesticides (OCPs) in marine organisms (zooplankton, oyster, crab, and goby) on different trophic level. In the present study, sedentary bivalve (oyster) showed strong correlations in OCPs levels with surface sediment in the study area. This indicates the two compartments can be used as alternative for pollution monitoring of OCPs even in narrow scale in space. Bioaccumulation and trophic transfer of OCPs was strongly associated with their hydrophobicity (i.e., KOW). HCHs with log KOW < 5 did not show any enrichment through food-chain. However, log BAF values of OCPs with log KOW > 5 positioned over the 1:1 lines of log BAF and log KOW of the top predator, indicating the greater fugacities in the higher trophic level and thus the occurrence of biomagnification via ingestion. Based on trophic transfer factors (TTF), more hydrophobic OCPs with log KOW > 5 were enriched by several to several ten times in the highest trophic level relative to the lowest trophic level. This finding can be used in the establishment of marine environmental water quality criteria by considering biomagnification factors (TTF in this study) of OCPs.

Distribution of heavy metal contamination in soils and sediments in the vicinity of the Hwacheon Au-Ag-Pb-Zn mine

  • Lee Sung-Eun;Lee Jin-Soo;Chon Hyo-Taek
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.529-531
    • /
    • 2003
  • In order to investigate the level of heavy metal contamination and the seasonal variation of metal concentrations in soils and sediments influenced by past mining activities, tailings, soil and sediment samples were collected from the Hwacheon mine in Korea. The main pollution sources in this mine site are suggested as tailings and mine waste rocks. Elevated levels of Cd, Pb and Zn were found in soils and sediments. In a study of seasonal variation on the heavy metals in soils and sediments, heavy metals were higher enriched collected from before rainy season ($2^{nd}$ sampling) than after rainy season ($1^{st}$ sampling). Also, in order to estimate the microbial effects on Cd speciation in sediments, bacteria which can adsorb Cd was isolated and Cd adsorption characteristics of isolated bacteria in Cd solution was evaluated. The Cd bioremoval efficiency in Cd solution (5 ppm) by bacteria was more than $90\%$. Bioremoval efficiency in single metal solution was higher than that in mixed metal solution of Pb and Zn.

  • PDF

Heavy Metal Contamination in Surface Sediments from Masan and Jinhae Bay, Southeast Coast of Korea (남해 동부해역 임해공단 연안퇴적물의 중금속 오염: 마산만 및 진해만)

  • Cho, Yeong-Gil;Lee, Chang-Bok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.4
    • /
    • pp.302-313
    • /
    • 2012
  • Concentrations of selected heavy metals (Al, Fe, Mn, Cr, Cu, Ni, Zn, Pb, As and Cd) in surface sediments from 96 sites in Masan and Jinhae Bay were studied in order to understand metal contamination. Results show that the surface sediments were mainly enriched by Cu (18-294 ppm), Zn (67-568 ppm), Pb (10-120 ppm) and Cd (0.2-3.5 ppm). The coastal zone of Masan Bay was significantly more contaminated than the non-coastal zone, and spatial distribution pattern suggested additional sources of heavy metal input in the coastal area. The enrichment ratio and geoaccumulation index ($I_{geo}$) have been calculated and the relative contamination levels assessed in the study area. The enrichment ratios of Cu, Zn, Pb and Cd in Masan Bay have been observed to be relatively high. $I_{geo}$ results reveal that the study area is not contaminated with respect to Fe, Mn, Cr and Ni; moderately to strongly contaminated with Cu, Zn and Pb; and strongly to strong contaminated with Cd. The high contents of Cu, Zn, Pb and Cd in the study area result from anthropogenic activities in the catchment area. Based on the eight different sediment quality guideline values from USA (ERL, ERM), Canada (TEL, PEL), Australia/New Zealand (ISQG-high, ISQG-low) and Hong Kong (ISQV-low, ISQV-high), sediment quality of Masan and Jinhae Bay was also assessed and characterized.

Sedimentary Geochemical Characteristics and Environmental Impact of Sediments in Tamjin River and Doam Bay (탐진강 및 도암만 지역 퇴적물의 퇴적지구화학적 특성과 환경영향)

  • Hong, Jin-Taek;Na, Bum-Soo;Kim, Joo-Yong;Koh, Yeong-Koo;Youn, Seok-Tai;Shin, Sang-Eun;Kim, Hai-Gyoung;Moon, Byoung-Chan;Oh, Kang-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.6
    • /
    • pp.393-405
    • /
    • 2007
  • To examine the sedimentary geochemical characteristics of sediment in the Tamjin River and Doam bay, the analysis was conducted, using the sample obtained in February 2000, on the grain size and the contents of metallic elements and organic carbon. The factors that influence the geochemical behavior of metallic elements in the surface sediment are grain size, organism, surrounding soil and $CaCO_3$. To find out the pollution level of metallic elements, the enrichment factor (EF) and the index of geoaccumulation ($I_{geo}$) were researched. The majority of metallic elements sustain their values in natural state. The elements such as K, Ba, Zr, etc. appear to be rich in some places. The EF and $I_{geo}$ of P, Cu, Zn, and Pb, which belong to toxic heavy metals, are partly related with man-made pollution. P and Cu have a high EF, Pb has a high $I_{geo}$ and Zn is high in both EF and $I_{geo}$. The low contents of P and Cu are not likely to be related with the pollution of water environment. However, given the development of relative pollution, the research and the management regarding the pollutants are needed. Because Pb, naturally enriched by geological characteristics, has a large influence on water environment along with Zn, the adequate measures against man-made pollution should be worked out.

Geochemical Properties of Deep Sea Sediment in the Benthic Environmental Impact Experiment Site (BIS) of Korea (심해 저층환경충격 시험지역의 퇴적물 지화학적 특성)

  • Kong, Gee Soo;Hyeong, Kiseong;Choi, Hun-Soo;Chi, Sang-Bum
    • Ocean and Polar Research
    • /
    • v.36 no.4
    • /
    • pp.407-421
    • /
    • 2014
  • The benthic environmental impact experiment addresses environmental impacts at a specific site related to deep-sea mineral resource development. We have acquired several tens of multi- or box core samples at 31 sites within the Benthic environmental Impact Site (BIS) since 2010, aiming to examine the basic properties of surficial deep-sea sediment as a potential source for deep-water plumes. In this study, we present the geochemical properties such as major elements, rare earth elements (REEs), and heavy metal contents at the BIS. Such proxies vary distinctly according to the Facies association. The lithology of all core sediments in the BIS corresponds to both Association Ib and Association IIIb. The vertical profiles of some major elements ($SiO_2$, $Fe_2O_3$, CaO, $P_2O_5$, MgO, MnO) show noticeable differences between Association Ib and IIIb, while others ($Al_2O_3$, $TiO_2$, $Na_2O$, and $K_2O$) do not vary between Association Ib and IIIb. REEs are also distinctly different for Associations Ib and IIIb; in Association Ib, REY and HREE/LREE are uniform through the sediment section, while they increase downward in Association IIIb like the major elements; below a depth of 8 cm, REY is over 500 ppm. The metal enrichment factor (EF) evaluates the anthropogenic influences of some metals (Cu, Ni, Pb, Zn, and Cd) in marine sediments. In both Associations, the EF for Cu is over 1.5, the EF for Ni and Pb ranges from 0.5 to 1.5, and the EF for Zn and Cd are less than 0.5, indicating Cu is enriched but Zn and Cd are relatively depleted in the BIS. The vertical variations of geochemical properties between Association Ib and IIIb are shown to be clearly different, which seems to be related to the global climate changes such as the shift of Intertropical convergence zone (ITCZ).

A Laboratory-Scale Study of the Applicability of a Halophilic Sediment Bioelectrochemical System for in situ Reclamation of Water and Sediment in Brackish Aquaculture Ponds: Effects of Operational Conditions on Performance

  • Pham, Hai The;Vu, Phuong Ha;Nguyen, Thuy Thu Thi;Bui, Ha Viet Thi;Tran, Huyen Thanh Thi;Tran, Hanh My;Nguyen, Huy Quang;Kim, Byung Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.10
    • /
    • pp.1607-1623
    • /
    • 2019
  • Sediment bioelectrochemical systems (SBESs) can be integrated into brackish aquaculture ponds for in-situ bioremediation of the pond water and sediment. Such an in-situ system offers advantages including reduced treatment cost, reusability and simple handling. In order to realize such an application potential of the SBES, in this laboratory-scale study we investigated the effect of several controllable and uncontrollable operational factors on the in-situ bioremediation performance of a tank model of a brackish aquaculture pond, into which a SBES was integrated, in comparison with a natural degradation control model. The performance was evaluated in terms of electricity generation by the SBES, Chemical oxygen demand (COD) removal and nitrogen removal of both the tank water and the tank sediment. Real-life conditions of the operational parameters were also experimented to understand the most close-to-practice responses of the system to their changes. Predictable effects of controllable parameters including external resistance and electrode spacing, similar to those reported previously for the BESs, were shown by the results but exceptions were observed. Accordingly, while increasing the electrode spacing reduced the current densities but generally improved COD and nitrogen removal, increasing the external resistance could result in decreased COD removal but also increased nitrogen removal and decreased current densities. However, maximum electricity generation and COD removal efficiency difference of the SBES (versus the control) could be reached with an external resistance of $100{\Omega}$, not with the lowest one of $10{\Omega}$. The effects of uncontrollable parameters such as ambient temperature, salinity and pH of the pond (tank) water were rather unpredictable. Temperatures higher than $35^{\circ}C$ seemed to have more accelaration effect on natural degradation than on bioelectrochemical processes. Changing salinity seriously changed the electricity generation but did not clearly affect the bioremediation performance of the SBES, although at 2.5% salinity the SBES displayed a significantly more efficient removal of nitrogen in the water, compared to the control. Variation of pH to practically extreme levels (5.5 and 8.8) led to increased electricity generations but poorer performances of the SBES (vs. the control) in removing COD and nitrogen. Altogether, the results suggest some distinct responses of the SBES under brackish conditions and imply that COD removal and nitrogen removal in the system are not completely linked to bioelectrochemical processes but electrochemically enriched bacteria can still perform non-bioelectrochemical COD and nitrogen removals more efficiently than natural ones. The results confirm the application potential of the SBES in brackish aquaculture bioremediation and help propose efficient practices to warrant the success of such application in real-life scenarios.