• Title/Summary/Keyword: Enhanced Text Mining Approach

Search Result 2, Processing Time 0.017 seconds

An Enhanced Text Mining Approach using Ensemble Algorithm for Detecting Cyber Bullying

  • Z.Sunitha Bai;Sreelatha Malempati
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.1-6
    • /
    • 2023
  • Text mining (TM) is most widely used to process the various unstructured text documents and process the data present in the various domains. The other name for text mining is text classification. This domain is most popular in many domains such as movie reviews, product reviews on various E-commerce websites, sentiment analysis, topic modeling and cyber bullying on social media messages. Cyber-bullying is the type of abusing someone with the insulting language. Personal abusing, sexual harassment, other types of abusing come under cyber-bullying. Several existing systems are developed to detect the bullying words based on their situation in the social networking sites (SNS). SNS becomes platform for bully someone. In this paper, An Enhanced text mining approach is developed by using Ensemble Algorithm (ETMA) to solve several problems in traditional algorithms and improve the accuracy, processing time and quality of the result. ETMA is the algorithm used to analyze the bullying text within the social networking sites (SNS) such as facebook, twitter etc. The ETMA is applied on synthetic dataset collected from various data a source which consists of 5k messages belongs to bullying and non-bullying. The performance is analyzed by showing Precision, Recall, F1-Score and Accuracy.

Media coverage of the conflicts over the 4th Industrial Revolution in the Republic of Korea from 2016 to 2020: a text-mining approach

  • Yang, Jiseong;Kim, Byungjun;Lee, Wonjae
    • Asian Journal of Innovation and Policy
    • /
    • v.11 no.2
    • /
    • pp.202-221
    • /
    • 2022
  • The media has depicted an abrupt socio-technological change in the Republic of Korea with the 4th Industrial Revolution. Because technologies cannot realize their potential without social acceptance, studying conflicts incurred by such a change is imperative. However, little literature has focused on conflicts caused by technologies. Therefore, the current study investigated media coverage regarding conflicts related to the 4th Industrial Revolution from 2016 to 2020 in the Republic of Korea, applying text-mining techniques. We found that the overall amount and coverage pattern conforms to the issue attention cycle. Also, the three major topics ("SMEs & Startups," "Mobility Conflict," and "Human & Technology") indicate quarrels between conflicting social entities. Moreover, the temporal change in media coverage implies the political use of the term rather than technological. However, we also found the media's deliberative discussion on the socio-technological impact. This study is significant because we expanded the discussion on media coverage of technologies to the realm of social conflicts. Furthermore, we explored the news articles of the recent five years with a text-mining approach that enhanced the objectivity of the research.