• Title/Summary/Keyword: Engineering properties

Search Result 32,421, Processing Time 0.055 seconds

A stochastic finite element method for dynamic analysis of bridge structures under moving loads

  • Liu, Xiang;Jiang, Lizhong;Xiang, Ping;Lai, Zhipeng;Zhang, Yuntai;Liu, Lili
    • Structural Engineering and Mechanics
    • /
    • v.82 no.1
    • /
    • pp.31-40
    • /
    • 2022
  • In structural engineering, the material properties of the structures such as elastic modulus, shear modulus, density, and size may not be deterministic and may vary at different locations. The dynamic response analysis of such structures may need to consider these properties as stochastic. This paper introduces a stochastic finite element method (SFEM) approach to analyze moving loads problems. Firstly, Karhunen-Loéve expansion (KLE) is applied for expressing the stochastic field of material properties. Then the mathematical expression of the random field is substituted into the finite element model to formulate the corresponding random matrix. Finally, the statistical moment of the dynamic response is calculated by the point estimation method (PEM). The accuracy and efficiency of the dynamic response obtained from the KLE-PEM are demonstrated by the example of a moving load passing through a simply supported Euler-Bernoulli beam, in which the material properties (including elastic modulus and density) are considered as random fields. The results from the KLE-PEM are compared with those from the Monte Carlo simulation. The results demonstrate that the proposed method of KLE-PEM has high accuracy and efficiency. By using the proposed SFEM, the random vertical deflection of a high-speed railway (HSR) bridge is analyzed by considering the random fields of material properties under the moving load of a train.

Estimation of spatial autocorrelation variations of uncertain geotechnical properties for the frozen ground

  • Wang, Di;Wang, Tao;Xu, Daqing;Zhou, Guoqing
    • Geomechanics and Engineering
    • /
    • v.22 no.4
    • /
    • pp.339-348
    • /
    • 2020
  • The uncertain geotechnical properties of frozen soil are important evidence for the design, operation and maintenance of the frozen ground. The complex geological, environmental and physical effects can lead to the spatial variations of the frozen soil, and the uncertain mechanical properties are the key factors for the uncertain analysis of frozen soil engineering. In this study, the elastic modulus, strength and Poisson ratio of warm frozen soil were measured, and the statistical characteristics under different temperature conditions are obtained. The autocorrelation distance (ACD) and autocorrelation function (ACF) of uncertain mechanical properties are estimated by random field (RF) method. The results show that the mean elastic modulus and mean strength decrease with the increase of temperature while the mean Poisson ratio increases with the increase of temperature. The average values of the ACD for the elastic modulus, strength and Poisson ratio are 0.64m, 0.53m and 0.48m, respectively. The standard deviation of the ACD for the elastic modulus, strength and Poisson ratio are 0.03m, 0.07m and 0.03m, respectively. The ACFs of elastic modulus, strength and Poisson ratio decrease with the increase of ratio of local average distance and scale of fluctuation. The ACF of uncertain mechanical properties is different when the temperature is different. This study can improve our understanding of the spatial autocorrelation variations of uncertain geotechnical properties and provide a basis and reference for the uncertain settlement analysis of frozen soil foundation.

The Analytical Study of Fire Properties in Atrium Space (아트리움 공간에 있어서 화재온도성상에 관한 이론해석)

  • 김화중;이지희;최금란;김경례
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.113-119
    • /
    • 1993
  • Atrium being on fire, the flame is spread vertically, the methods of fire protection and the standards of security are different respectively. Therefore, in the case of atrium, it has many problems on the fire protection and the application of statute according to the space properties. So it is important to analysis, atrium being on fire, fire properties to space properties. From these points of view, the purpose of this study is to analysis the fire properties of atrium .

  • PDF

The Experimental Study of Fire Properties in Atrium Space of High-rise Buildings (고층빌딩의 아트리움 공간에 있어서 화재성상에 관한 실험 연구)

  • 김화중;양승호;최금란
    • Fire Science and Engineering
    • /
    • v.7 no.2
    • /
    • pp.13-23
    • /
    • 1993
  • Recently, the plans and constructions of atrium are prevalent widely. But. in the case of atrium it has many problems from the viewpoint of space properties of atrium. Therefore, planning of fire protection is required urgently. The purpose of this study is to analysis the fire properties on the several heights of atrium through three models which the ratio of atrium's width to height is 1:1, 1:1.5 and 1:2 respectively.

  • PDF

Mechanical Properties of Cellulose-filled Epoxy Hybrid Composites Reinforced with Alkali-treated Hemp Fiber (염기 처리 대마 섬유로 강화된 셀룰로오스 충전 에폭시 하이브리드 복합재의 기계적 물성)

  • Anand, P.;Anbumalar, V.
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.46-55
    • /
    • 2015
  • There is a limit for deforestation in order to keep the environmental cycle undisturbed. The heart of the paper is to replace the wood to a maximum extent to obtain a sustainable environment. This research aims at new natural composites in which treated hemp fiber used as reinforcement, synthetic cellulose used as particulate to improve the adhesion between matrix - fiber interface and Epoxy LY556 acted as matrix fabricated by hand layup technique. The density, water absorption, tensile properties, impact strength, hardness, flexural properties and compressive properties have been evaluated under ASTM standards and compare the results with existing materials such as wood, aluminium, etc., The composite hemp fiber reinforced polymer (HFRP) could be exploited as an effective replacement for wood and it would be suitable for automotive applications by comparing results.

Investigation on Adhesion Properties of Sandwich Composite Structures Considering on Surface Treatments

  • Park, Gwanglim;Oh, Kyungwon;Kong, Changduk;Park, Hyunbum
    • International Journal of Aerospace System Engineering
    • /
    • v.1 no.1
    • /
    • pp.16-20
    • /
    • 2014
  • Recently, various kinds of study on light weight structure are performing in the world. The Al honeycomb sandwich structural type adopt for improvement of lightness and structural stability to major part structure of aircraft or spacecraft. Adhesion badness properties of adhesive and adhesion properties of fillet mainly studied about al honeycomb structure. But study for adhesive properties of sandwich construction with surface treatment of Aluminum alloy barely performed. In this study, adhesive film was used between Al and honeycomb core of honeycomb panel[1]. The study for adhesive properties of sandwich construction with surface treatment of AA 5052 skin was performed.

Effects of temperature dependent material properties on mixed mode crack tip parameters of functionally graded materials

  • Rajabi, Mohammad;Soltani, Nasser;Eshraghi, Iman
    • Structural Engineering and Mechanics
    • /
    • v.58 no.2
    • /
    • pp.217-230
    • /
    • 2016
  • Effects of temperature dependent material properties on mixed mode fracture parameters of functionally graded materials subjected to thermal loading are investigated. A domain form of the $J_k$-integral method including temperature-dependent material properties and its numerical implementation using finite element analysis is presented. Temperature and displacement fields are calculated using finite element analysis and are used to compute mixed mode stress intensity factors using the $J_k$-integral. Numerical results indicate that temperature-dependency of material properties has considerable effect on the mixed-mode stress intensity factors of cracked functionally graded structures.

Prediction model for the hydration properties of concrete

  • Chu, Inyeop;Amin, Muhammad Nasir;Kim, Jin-Keun
    • Computers and Concrete
    • /
    • v.12 no.4
    • /
    • pp.377-392
    • /
    • 2013
  • This paper investigates prediction models estimating the hydration properties of concrete, such as the compressive strength, the splitting tensile strength, the elastic modulus,and the autogenous shrinkage. A prediction model is suggested on the basis of an equation that is formulated to predict the compressive strength. Based on the assumption that the apparent activation energy is a characteristic property of concrete, a prediction model for the compressive strength is applied to hydration-related properties. The hydration properties predicted by the model are compared with experimental results, and it is concluded that the prediction model properly estimates the splitting tensile strength, elastic modulus, and autogenous shrinkage as well as the compressive strength of concrete.

Enhancement of Thermomechanical Properties of Poly(D, L-lactic-co-glycolic acid) and Graphene Oxide Composite Films for Scaffolds

  • Yoon, Ok-Ja;Sohn, Il-Yung;Kim, Duck-Jin;Lee, Nae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.548-548
    • /
    • 2012
  • Thermomechanical and surface chemical properties of composite films of poly(D, L-lactic-co-glycolic acid) (PLGA) were significantly improved by the addition of graphene oxide (GO) nanosheets as nanoscale fillers to the PLGA polymer matrix. Enhanced thermomechanical properties of the PLGA/GO (2 wt.%) composite film, including an increase in the crystallization temperature and reduction in the weight loss, were observed. The tensile modulus of a composite film with increased GO fraction was presumably enhanced due to strong chemical bonding between the GO nanosheets and PLGA matrix. Enhanced hydrophilicity of the composite film due to embedded GO nanosheets also improved the biocompatibility of the composite film. Improved thermomechanical properties and biocompatibility of the PLGA composite films embedded with GO nanosheets may be applicable to biomedical applications such as scaffolds.

  • PDF

Mechanical properties of top neck mollusks shell nano composite in different environmental conditions

  • Masir, Amin Nouroozi;Darvizeh, Abolfazl;Zajkani, Asghar
    • Advances in materials Research
    • /
    • v.7 no.3
    • /
    • pp.185-194
    • /
    • 2018
  • The mechanism of biological materials structure is very complex and has optimal properties compared to engineering materials. Top Neck mollusks shells, as an example of biological materials, have hierarchical structure, which 95 percent of its structure is Aragonite and 5 percent organic materials. This article detected mechanical properties of the Top Neck mollusks shell as a Nano composite using Nano-indentation method in different situations. Research findings indicate that mechanical properties of the Top Neck mollusks shell including elastic modulus and hardness are higher than a fresh one preserved in -50 centigrade and also a Top Neck mollusks shell preserved in environmental conditions. Nano-indentation test results are so close in range, overall, that hardness degree is 3900 to 5200 MPa and elastic modulus is 70 to 85 GPa.