• Title/Summary/Keyword: Engineering plastic core

Search Result 142, Processing Time 0.024 seconds

A Study on Improvement of WC Core Surface Roughness by Feedrate Control (Feedrate Control에 의한 초경코어 표면조도 향상에 관한 연구)

  • Kim, Hyun-Uk;Jeong, Sang-Hwa;Lee, Dong-Kil;Kim, Sang-Suk;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.1
    • /
    • pp.57-62
    • /
    • 2009
  • Recently, with the increasing lightness and miniaturization of high resolution camera phones, the demand for aspheric glass lens has increased because plastic and spherical lens are unable to satisfy the required performance. An aspheric glass lens is fabricated by the high temperature and pressure molding using a tungsten carbide molding core, so precision grinding technology for the molding core surface are required. This paper reports a development of feedrate control grinding method for aspherical molding core using parallel grinding method. A plane molding core was ground using conventional and feedrate control grinding method. The performance of the feedrate control method was evaluated by measurement of surface roughness. The result indicated that the average surface roughness was reduced to 1.5 nm, which is more efficient than the conventional grinding method.

Behavior of circular thin-walled steel tube confined concrete stub columns

  • Ding, Fa-xing;Tan, Liu;Liu, Xue-mei;Wang, Liping
    • Steel and Composite Structures
    • /
    • v.23 no.2
    • /
    • pp.229-238
    • /
    • 2017
  • This paper presents a combined numerical and theoretical study on the composite action between steel and concrete of circular steel tube confined concrete (STCC) stub columns under axial compressive loading with a full theoretical elasto-plastic model and finite element (FE) model in comparison with experimental results. Based on continuum mechanics, the elasto-plastic model for STCC stub columns was established and the analysis was realized by a FORTRAN program and the three dimensional FE model was developed using ABAQUS. The steel ratio of the circular STCC columns were defined in range of 0.5% to 2% to analyze the composite action between steel tube and concrete, and make a further study on the advantages of the circular STCC columns. By comparing the results using the elasto-plastic methods with the parametric analysis result of FE model, the appropriate friction coefficient between the steel tube and core concrete was defined as 0.4 to 0.6. Based on ultimate balance theory, the formula of ultimate load capacity applying to the circular STCC stub columns was developed.

End Effectors and Flexible Fixtures for Rapidly Holding Freeform-Surface CFRP Workpieces (자유곡면 CFRP 판형 가공물 신속고정용 유연지그 및 엔드 이펙터)

  • Son, Younghoon;Do, Minh Duc;Choi, Hae-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.4
    • /
    • pp.243-246
    • /
    • 2017
  • In this study, flexible fixtures and end effectors are conceptually designed for the holding of thin-walled carbon-fiber reinforced-plastic (CFRP) workpieces in machining processes. Firstly, the fixture scenarios and system requirements for the conceptual designs of flexible-fixture and core units are proposed, including the propounding of the workpiece-holding mechanism and the core-unit requirements. A ball-joint pneumatic system is determined as a locking mechanism of the flexible-fixture system for the machining of thin-walled components. Secondly, conceptual designs of the core units are suggested with the driven requirements from the fixture scenarios. A self-tilting mechanism and an end-effector return mechanism are also proposed. Finally, the prototypes of the core units are manufactured, and the workpiece-holding capacity of each prototype is measured.

Cyclic test of buckling restrained braces composed of square steel rods and steel tube

  • Park, Junhee;Lee, Junho;Kim, Jinkoo
    • Steel and Composite Structures
    • /
    • v.13 no.5
    • /
    • pp.423-436
    • /
    • 2012
  • In this study total of six buckling-restrained braces (BRBs) were manufactured using a square steel rod as a load-resisting core member and a hollow steel tube as restrainer to prevent global buckling of the core. The gap between the core and the tube was filled with steel rods as filler material. The performances of the proposed BRB from uniaxial and subassemblage tests were compared with those of the specimens filled with mortar. The test results showed that the performance of the BRB with discontinuous steel rods as filler material was not satisfactory, whereas the BRBs with continuous steel rods as filler material showed good performance when the external tubes were strong enough against buckling. It was observed that the buckling strength of the external tube of the BRBs filled with steel rods needs to be at least twice as high as that of the BRBs filled with mortar to ensure high cumulative plastic deformation of the BRB.

Generation of Cavity and Core Plates of an Injection Mold for a Pseudo-Solid Part Model (의사 솔리드 모델의 캐비티 및 코어판 생성)

  • 장진우;이상헌;임성락
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1601-1604
    • /
    • 2003
  • This paper describes a split operation for generation of core and cavity plates of an injection mold for a pseudo-solid model of a plastic part. Here, a pseudo-solid model means a sheet model that looks like a solid model. but whose boundary is not closed. When a solid model created in a different CAD system is imported through standard data exchange format, a pseudo-solid model is created in most cases as tolerance or some other problems make sewing operation failed. As most existing mold design system based on solid modeling kernels require a complete part solid model, mold designers have to do time-consuming healing operations to convert a pseudo-solid to solid. The essential capability of mold design system is the split operation for generation of core and cavity plates. Thus. we developed a split operation for pseudo-solid part model to eliminate or reduce healing preprocessing for mold design.

  • PDF

Performance based assessment for tall core structures consisting of buckling restrained braced frames and RC walls

  • Beiraghi, Hamid;Alinaghi, Ali
    • Earthquakes and Structures
    • /
    • v.21 no.5
    • /
    • pp.515-530
    • /
    • 2021
  • In a tall reinforced concrete (RC) core wall system subjected to strong ground motions, inelastic behavior near the base as well as mid-height of the wall is possible. Generally, the formation of plastic hinge in a core wall system may lead to extensive damage and significant repairing cost. A new configuration of core structures consisting of buckling restrained braced frames (BRBFs) and RC walls is an interesting idea in tall building seismic design. This concept can be used in the plan configuration of tall core wall systems. In this study, tall buildings with different configurations of combined core systems were designed and analyzed. Nonlinear time history analysis at severe earthquake level was performed and the results were compared for different configurations. The results demonstrate that using enough BRBFs can reduce the large curvature ductility demand at the base and mid-height of RC core wall systems and also can reduce the maximum inter-story drift ratio. For a better investigation of the structural behavior, the probabilistic approach can lead to in-depth insight. Therefore, incremental dynamic analysis (IDA) curves were calculated to assess the performance. Fragility curves at different limit states were then extracted and compared. Mean IDA curves demonstrate better behavior for a combined system, compared with conventional RC core wall systems. Collapse margin ratio for a RC core wall only system and RC core with enough BRBFs were almost 1.05 and 1.92 respectively. Therefore, it appears that using one RC core wall combined with enough BRBF core is an effective idea to achieve more confidence against tall building collapse and the results demonstrated the potential of the proposed system.

Numerical modelling of circular reinforced concrete columns confined with GFRP spirals using fracture-plastic model

  • Muhammad Saad Ifrahim;Abdul Jabbar Sangi;Shuaib H. Ahmad
    • Computers and Concrete
    • /
    • v.31 no.6
    • /
    • pp.527-536
    • /
    • 2023
  • Fiber Reinforced Polymer (FRP) bar has emerged as a viable and sustainable replacement to steel in reinforced concrete (RC) under severe corrosive environment. The behavior of concrete columns reinforced with FRP bars, spirals, and hoops is an ongoing area of research. In this study, 3D nonlinear numerical modelling of circular concrete columns reinforced with Glass Fiber Reinforced Polymer (GFRP) bars and transversely confined with GFRP spirals were conducted using fracture-plastic model. The numerical models and experimental results are found to be in good agreement. The effectiveness of confinement was accessed through von-mises stresses, and it was found that the stresses in the concrete's core are higher with a 30 mm pitch (46 MPa) compared to a 60 mm pitch (36 MPa). The validated models are used to conduct parametric studies. In terms of axial load carrying capacity and member ductility, the effect of concrete strength, spiral pitch, and longitudinal reinforcement ratio are thoroughly investigated. The confinement effect and member ductility of a GFRP RC column increases as the spiral pitch decreases. It is also found that the confinement effect and member ductility decreased with increase in strength of concrete.

Micro-finite element and analytical investigations of seismic dampers with steel ring plates

  • Rousta, Ali Mohammad;Azandariani, Mojtaba Gorji
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.565-579
    • /
    • 2022
  • This study investigated the yielding capacity and performance of seismic dampers constructed with steel ring plates using numerical and analytical approaches. This study aims to provide an analytical relationship for estimating the yielding capacity and initial stiffness of steel ring dampers. Using plastic analysis and considering the mechanism of plastic hinge formation, a relation has been obtained for estimating the yielding capacity of steel ring dampers. Extensive parametric studies have been carried out using a nonlinear finite element method to examine the accuracy of the obtained analytical relationships. The parametric studies include investigating the influence of the length, thickness, and diameter of the ring of steel ring dampers. To this end, comprehensive verification studies are performed by comparing the numerical predictions with several reported experimental results to demonstrate the numerical method's reliability and accuracy. Comparison is made between the hysteresis curves, and failure modes predicted numerically or obtained/observed experimentally. Good agreement is observed between the numerical simulations and the analytical predictions for the yielding force and initial stiffness. The difference between the numerical models' ultimate tensile and compressive capacities was observed that average of about 22%, which stems from the performance of the ring-dampers in the tensile and compression zones. The results show that the steel ring-dampers are exhibited high energy dissipation capacity and ductility. The ductility parameters for steel ring-damper between values were 7.5 to 4.1.

A study on plastic mold design for robot shape and mold manufacture (로봇형상 플라스틱금형설계 및 제작에 관한 연구)

  • Kim, Sei-hwan;Choi, Kye-kwang
    • Design & Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.64-69
    • /
    • 2012
  • This study looks at plastic mold design for robots and mold manufacture, which is an injection mold branch at The Korea-China-Japan University Grand Prize Contest. Product analysis and layout, molding analysis, and upper and lower core design are carried out to design molds in 2D and 3D. After the design of the cores, NC machining software is used for simulation before actual manufacture. Before the production of end-product, test injection is done to troubleshoot problems like bad dimensions, burr, cracks and stepped pulley.

  • PDF

Local and global buckling condition of all-steel buckling restrained braces

  • Mirtaheri, Seyed Masoud;Nazeryan, Meissam;Bahrani, Mohammad Kazem;Nooralizadeh, Amin;Montazerian, Leila;Naserifard, Mohamadhosein
    • Steel and Composite Structures
    • /
    • v.23 no.2
    • /
    • pp.217-228
    • /
    • 2017
  • Braces are one of the retrofitting systems of structure under earthquake loading. Buckling restrained braces (BRBs) are one of the very efficient braces for lateral loads. One of the key needs for a desirable and acceptable behavior of buckling-restraining brace members under intensive loading is that it prevents total buckling until the bracing member tolerates enough plastic deformation and ductility. This paper presents the results of a set of analysis by finite element method on buckling restrained braces in which the filler materials within the restraining member have been removed. These braces contain core as the conventional BRBs, but they have a different buckling restrained system. The purpose of this analysis is conducting a parametric study on various empty spaces between core and restraining member, the effect of friction between core and restraining member and applying initial deformation to brace system to investigate the global buckling behavior of these braces. The results of analysis indicate that the flexural stiffness of restraining member, regardless of the amount of empty space, can influence the global buckling behavior of brace significantly.