• Title/Summary/Keyword: Engineering integrated management

Search Result 1,847, Processing Time 0.03 seconds

Development Plan of Facility Importance, Risk, and Damage Estimation Inventory Construction for Assisting Disaster Response Decision-Making (재난대응 의사결정 지원을 위한 시설물 중요도·위험도·피해액 산정 인벤토리 구축 방안 연구)

  • CHOI, Soo-Young;GANG, Su-Myung;JO, Yun-Won;OH, Eun-Ho;PARK, Jae-Woo;KIM, Gil-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.1
    • /
    • pp.167-179
    • /
    • 2016
  • The safety of SOC facilities is constantly under threat by the globally increasing abnormal climate. Responding to disasters requires prompt decision-making such as suggesting evacuation paths. For doing so, spatio-temporal information with convergence of disaster information and SOC facility information must be utilized. Such information is being collected separately by the government or related organizations, but not collectively. The collective control of the separately collected disaster information and the generation of SOC facility safety and damage information are required for prompt disaster response. Also, as disaster information requires spatio-temporal convergence in its nature, the construction of an inventory that integrates related information and assists disaster response decision-making is required. A plan to construct a facility importance, risk, and damage estimation inventory for assisting prompt disaster response decision-making is suggested in this study. Through this study, the disaster and SOC facility-related data, which are being managed separately, can be collected and standardized. The integrated information required for the estimation of facility importance, risk, and damage can be provided. The suggested system is expected to be used as a decision-making tool for proactive disaster response.

Analysis on the Temperature of Multi-core Processors according to Placement of Functional Units and L2 Cache (코어 내부 구성요소와 L2 캐쉬의 배치 관계에 따른 멀티코어 프로세서의 온도 분석)

  • Son, Dong-Oh;Kim, Jong-Myon;Kim, Cheol-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.4
    • /
    • pp.1-8
    • /
    • 2014
  • As cores in multi-core processors are integrated in a single chip, power density increased considerably, resulting in high temperature. For this reason, many research groups have focused on the techniques to solve thermal problems. In general, the approaches using mechanical cooling system or DTM(Dynamic Thermal Management) have been used to reduce the temperature in the microprocessors. However, existing approaches cannot solve thermal problems due to high cost and performance degradation. However, floorplan scheme does not require extra cooling cost and performance degradation. In this paper, we propose the diverse floorplan schemes in order to alleviate the thermal problem caused by the hottest unit in multi-core processors. Simulation results show that the peak temperature can be reduced efficiently when the hottest unit is located near to L2 cache. Compared to baseline floorplan, the peak temperature of core-central and core-edge are decreased by $8.04^{\circ}C$, $8.05^{\circ}C$ on average, respectively.

A Research about Time Domain Estimation Method for Greenhouse Environmental Factors based on Artificial Intelligence (인공지능 기반 온실 환경인자의 시간영역 추정)

  • Lee, JungKyu;Oh, JongWoo;Cho, YongJin;Lee, Donghoon
    • Journal of Bio-Environment Control
    • /
    • v.29 no.3
    • /
    • pp.277-284
    • /
    • 2020
  • To increase the utilization of the intelligent methodology of smart farm management, estimation modeling techniques are required to assess prior examination of crops and environment changes in realtime. A mandatory environmental factor such as CO2 is challenging to establish a reliable estimation model in time domain accounted for indoor agricultural facilities where various correlated variables are highly coupled. Thus, this study was conducted to develop an artificial neural network for reducing time complexity by using environmental information distributed in adjacent areas from a time perspective as input and output variables as CO2. The environmental factors in the smart farm were continuously measured using measuring devices that integrated sensors through experiments. Modeling 1 predicted by the mean data of the experiment period and modeling 2 predicted by the day-to-day data were constructed to predict the correlation of CO2. Modeling 2 predicted by the previous day's data learning performed better than Modeling 1 predicted by the 60-day average value. Until 30 days, most of them showed a coefficient of determination between 0.70 and 0.88, and Model 2 was about 0.05 higher. However, after 30 days, the modeling coefficients of both models showed low values below 0.50. According to the modeling approach, comparing and analyzing the values of the determinants showed that data from adjacent time zones were relatively high performance at points requiring prediction rather than a fixed neural network model.

Internet-of-Things Based Approach for Monitoring Pharmaceutical Cold Chain (사물인터넷을 이용한 의약품 콜드체인 관리 시스템)

  • Chandra, Abel Avitesh;Back, Jong Sang;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.9
    • /
    • pp.828-840
    • /
    • 2014
  • There is a new evolution in technological advancement taking place called the Internet of Things (IoT). The IoT enables physical world objects in our surroundings to be connected to the Internet. For this idea to come to life, two architectures are required: the Sensing Entity in the environment which collects data and connects to the cloud and the Cloud Service that hosts the data. In particular, the combination of wireless sensor network for sensing and cloud computing for managing sensor data is becoming a popular intervention for the IoT era. The pharmaceutical cold chain requires controlled environmental conditions for the sensitive products in order for them to maintain their potency and fit for consumption. The monitoring of distribution process is the only assurance that a process has been successfully validated. The distribution process is so critical that anomaly at any point will result in the process being no longer valid. Taking the cold chain monitoring to IoT and using its benefits and power will result in better management and product handling in the cold chain. In this paper, Arduino based wireless sensor network for storage and logistics (land and sea) is presented and integrated with Xively cloud service to offer a real-time and innovative solution for pharmaceutical cold chain monitoring.

A State-of-the-Practice Review on the Management of the Domestic Geotechnical and Geological Information Data (국내 지질 및 지반조사 자료 관리 현황에 대한 실용적 고찰)

  • Jang, Yonggu;Jeon, Heungsoo;Chae, Deokho;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.4
    • /
    • pp.39-46
    • /
    • 2013
  • Recently, there have been various researches on the cost reduction and savings during the construction activities with the development of automation and computerized information system. Considering the cost savings during the construction, the development of the geological and geotechnical information system with high practical use becomes very important since the geologic and geotechnical data are required for the design of the various structures. Currently, the geological and geotechnical data are collected and distributed as a geological/geotechnical map or engineering geology map and map with other specific purpose through geoinfo system at Korea Institute of Geoscience and Mineral Resources, Korea Mineral Resources GIS at Korea Mineral Resources Corporation, Geotechnical Information Portal System at Korea Institute of Construction Technology, Geotechnical Information System at the City of Seoul and the Ocean Data Integration Material System at Korea Hydrographic and Oceanographic Administration. Furthermore, the information on the groundwater is monitored and collected via Integrated Ground Water Information Service at Korea Water Resources Corporation and Rural Groundwater net at Korea Rural Community Corporation. Therefore, in this study, the contents of the geological and geotechnical data collected from the above mentioned government organization are compared and the DB and distribution system with higher utilization are suggested based on the comparisons with those from other countries such as United States of America, Japan and Germany.

Computation of Maintainability Index Using SysML-Based M&S Technique for Improved Weapon Systems Development (SysML 기반 모델링 및 시뮬레이션 기법을 활용한 무기체계 정비도 지수 산출)

  • Yoo, Yeon-Yong;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.88-95
    • /
    • 2018
  • Maintainability indicates how easily a system can be restored to the normal state when a system failure occurs. Systems developed to have high maintainability can be competitive due to reduced maintenance time, workforce and resources. Quantification of the maintainability is possible in many ways, but only after prototype production or with historical data. As such, the graph theory and 3D model data have been used, but there are limitations in management efficiency and early use. To solve this problem, we studied the maintainability index of weapon systems using SysML-based modeling and simulation technique. A SysML structure diagram was generated to simultaneously model the system design and maintainability of system components by reflecting the maintainability attributes acquired from the system engineering tool. Then, a SysML parametric diagram was created to quantify the maintainability through simulation linked with MATLAB. As a result, an integrated model to account for system design and maintainability simultaneously has been presented. The model can be used from early design stages to identify components with low maintainability index. The design of such components can be changed to improve maintainability and thus to reduce the risks of cost overruns and time delays due to belated design changes.

A Study on the Acceptance Factors of the Introduction of a Smart IoT Technology for Well-being Companion Animal (반려동물 웰빙을 위한 스마트 IoT 기술 도입 수용요인에 관한 연구)

  • Kang, Sung Kwang;Kim, Hoontae;Ji, Yong Gu;Lee, Jeongyoung
    • The Journal of Society for e-Business Studies
    • /
    • v.24 no.2
    • /
    • pp.143-163
    • /
    • 2019
  • The purpose of this study is to identify acceptance factors and influencing factors of respondents' adoption of smart IoT technology to companion animal health based on the integrated technology acceptance model. Based on the previous studies, we constructed the hypotheses by defining the technical factors, social factors, control variables, and mediating variables (UTAUT), and set the hypotheses between the independent variables of each factor and the dependent intention. A research model was designed to verify the relationship between variables. We developed questionnaires on the items and verified them through data collected from 494 people. As a result, product design, quality of service, product performance, and quality service of technological factors had a significant effects on performance expectancy and effort expectancy. However, product safety, product function awareness, and product price did not significantly affect performance expectancy and effort expectancy. Social influence had significant effects on cognitive effect, welfare system, and welfare facilities. In conclusion, the comparative analysis of technical factors and social factors showed that social factors have more significant effects on welfare systems and facilities.

Proposal of Performance Evaluation Methodology for Hydropower Reservoirs with Resilience Index (회복탄력성을 고려한 발전용댐의 성능평가 방법론 제안)

  • Kim, Dong Hyun;Yoo, Hyung Ju;Shin, Hong-Joon;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.1
    • /
    • pp.47-56
    • /
    • 2022
  • Recently, water resources and energy policies such as integrated water management and carbon neutrality are changing rapidly. There is an opinion that the value of hydropower reservoirs related to these policies should be re-evaluated. In the past, they have contributed to flood control in addition to electricity generation, such as operating at a limited water level during the flood season, but loss of power generation is inevitable with this operation. Therefore, this study introduced the concept of resilience to the hydropower generation system to minimize the power loss. A framework for evaluating the power generation performance of them was presented by defining the maximization of electricity sales as performance. Based on the current procedure of multiple operation plan, a scenario was established and simulation was performed using HEC-5. As a result of applying to the framework, it was confirmed that the power generation performance according to each scenario was evaluated as an important factor. And it was confirmed that the performance of flood control and water use could also be evaluated.

Improving Precision of the Exterior Orientation and the Pixel Position of a Multispectral Camera onboard a Drone through the Simultaneous Utilization of a High Resolution Camera (고해상도 카메라와의 동시 운영을 통한 드론 다분광카메라의 외부표정 및 영상 위치 정밀도 개선 연구)

  • Baek, Seungil;Byun, Minsu;Kim, Wonkook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.541-548
    • /
    • 2021
  • Recently, multispectral cameras are being actively utilized in various application fields such as agriculture, forest management, coastal environment monitoring, and so on, particularly onboard UAV's. Resultant multispectral images are typically georeferenced primarily based on the onboard GPS (Global Positioning System) and IMU (Inertial Measurement Unit)or accurate positional information of the pixels, or could be integrated with ground control points that are directly measured on the ground. However, due to the high cost of establishing GCP's prior to the georeferencing or for inaccessible areas, it is often required to derive the positions without such reference information. This study aims to provide a means to improve the georeferencing performance of a multispectral camera images without involving such ground reference points, but instead with the simultaneously onboard high resolution RGB camera. The exterior orientation parameters of the drone camera are first estimated through the bundle adjustment, and compared with the reference values derived with the GCP's. The results showed that the incorporation of the images from a high resolution RGB camera greatly improved both the exterior orientation estimation and the georeferencing of the multispectral camera. Additionally, an evaluation performed on the direction estimation from a ground point to the sensor showed that inclusion of RGB images can reduce the angle errors more by one order.

Research on Basic Concept Design for Digital Twin Ship Platform (디지털트윈 선박 플랫폼 설계를 위한 연구)

  • Yoon, Kyoungkuk;Kim, Jongsu;Jeon, Hyeonmin;Lim, Changkeun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1086-1091
    • /
    • 2022
  • The International Maritime Organization is establishing international agreements on maritime safety and security to prepare for the introduction of autonomous ships. In Korea, the industry is focusing on autonomous navigation system technology development, and to reduce accidents involving coastal ships, research on autonomous ship technology application plans for coastal ships is in progress. Interest in autonomously operated ships is increasing worldwide, and maritime demonstrations for verification of developed technologies are being pursued. In this study, a basic investigation was conducted on the design of a demonstration ship and an onshore platform (remote support center) using digital twin technology for application to coastal ships. To apply digital twin technology, an 8-m small battery-powered electric propulsion ship was selected as the target. The basic design of the twin-integrated platform was developed. The ship navigation and operation data were stored on a server system, and remote-control commands of the electric propulsion ship was achieved through communication between the ship and the onshore platform. Ship performance management, operation and operation optimization, and predictive control are possible using this digital twin technology. This safe and economical digital twin technology is applicable to ships responding to crisis scenarios.