• 제목/요약/키워드: Engineering analysis

검색결과 89,628건 처리시간 0.079초

Development of a User-Friendly Application for Voltage Sag Analysis

  • Park Chang-Hyun;Jang Gil-Soo;Kim Chul-Hwan;Kim Jae-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권2호
    • /
    • pp.145-152
    • /
    • 2006
  • This paper presents a windows application for voltage sag analysis and effective data visualization. The developed Voltage Sag Analysis Tool (VSAT) was designed by using the Object-Oriented Programming (OOP) concept and C++ programming language. The VSAT provides basic functions for voltage sag analysis such as power flow analysis, short circuit analysis and stochastic analysis. In particular, the VSAT provides effective data visualization through computer graphics and animation. Analysis results are expressed realistically and intuitively on geographical display. The Graphic User Interface (GUI) of VSAT was designed specifically for voltage sag analysis. In this paper, the development and implementation of VSAT is presented. In order to demonstrate the capabilities of VSAT, it is used to analyze the Jeju Island power system in South Korea.

BIM-DRIVEN ENERGY ANALYSIS FOR ZERO NET ENERGY TEST HOME (ZNETH)

  • Yong K. Cho;Thaddaeus A. Bode;Sultan Alaskar
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.276-284
    • /
    • 2009
  • As an on-going research project, Zero Net Energy Test Home (ZNETH) project investigates effective approaches to achieve whole-house environmental and energy goals. The main research objectives are (1) to identify energy saving solutions for designs, materials, and construction methods for the ZNETH house and (2) to verify whether ZNETH house can produce more energy than the house uses by utilizing Building Information Modeling (BIM) and energy analysis tools. The initial project analysis is conducted using building information modeling (BIM) and energy analysis tools. The BIM-driven research approach incorporates architectural and construction engineering methods for improving whole-building performance while minimizing increases in overall building cost. This paper discusses about advantages/disadvantages of using BIM integrated energy analysis, related interoperability issues between BIM software and energy analysis software, and results of energy analysis for ZNETH. Although this investigation is in its early stage, several dramatic outcomes have already been observed. Utilizing BIM for energy analysis is an obvious benefit because of the ease by which the 3D model is transferred, and the speed that an energy model can be analyzed and interpreted to improve design. The research will continue to use the ZNETH project as a testing bed for the integration of sustainable design into the BIM process.

  • PDF

공학교육 빅 데이터 분석 도구 개발 연구 (Research on the Development of Big Data Analysis Tools for Engineering Education)

  • 김윤영;김재희
    • 공학교육연구
    • /
    • 제26권4호
    • /
    • pp.22-35
    • /
    • 2023
  • As information and communication technology has developed remarkably, it has become possible to analyze various types of large-volume data generated at a speed close to real time, and based on this, reliable value creation has become possible. Such big data analysis is becoming an important means of supporting decision-making based on scientific figures. The purpose of this study is to develop a big data analysis tool that can analyze large amounts of data generated through engineering education. The tasks of this study are as follows. First, a database is designed to store the information of entries in the National Creative Capstone Design Contest. Second, the pre-processing process is checked for analysis with big data analysis tools. Finally, analyze the data using the developed big data analysis tool. In this study, 1,784 works submitted to the National Creative Comprehensive Design Contest from 2014 to 2019 were analyzed. As a result of selecting the top 10 words through topic analysis, 'robot' ranked first from 2014 to 2019, and energy, drones, ultrasound, solar energy, and IoT appeared with high frequency. This result seems to reflect the current core topics and technology trends of the 4th Industrial Revolution. In addition, it seems that due to the nature of the Capstone Design Contest, students majoring in electrical/electronic, computer/information and communication engineering, mechanical engineering, and chemical/new materials engineering who can submit complete products for problem solving were selected. The significance of this study is that the results of this study can be used in the field of engineering education as basic data for the development of educational contents and teaching methods that reflect industry and technology trends. Furthermore, it is expected that the results of big data analysis related to engineering education can be used as a means of preparing preemptive countermeasures in establishing education policies that reflect social changes.

Structural performance assessment of fixed offshore platform based on in-place analysis

  • Raheem, Shehata E. Abdel;Aal, Elsayed M. Abdel;AbdelShafy, Aly G.A.;Mansour, Mahmoud H.;Omar, Mohamed
    • Coupled systems mechanics
    • /
    • 제9권5호
    • /
    • pp.433-454
    • /
    • 2020
  • In-place analysis for offshore platforms is essentially required to make proper design for new structures and true assessment for existing structures. The structural integrity of platform components under the maximum and minimum operating loads of environmental conditions is required for risk assessment and inspection plan development. In-place analyses have been executed to check that the structural member with all appurtenances robustness and capability to support the applied loads in either storm condition or operating condition. A nonlinear finite element analysis is adopted for the platform structure above the seabed and the pile-soil interaction to estimate the in-place behavior of a typical fixed offshore platform. The analysis includes interpretation of dynamic design parameters based on the available site-specific data, together with foundation design recommendations for in-place loading conditions. The SACS software is utilized to calculate the natural frequencies of the model and to obtain the response of platform joints according to in-place analysis then the stresses at selected members, as well as their nodal displacements. The directions of environmental loads and water depth variations have important effects on the results of the in-place analysis behavior. The result shows that the in-place analysis is quite crucial for safe design and operation of offshore platform and assessment for existing offshore structures.

Failure analysis of composite plates under static and dynamic loading

  • Ray, Chaitali;Majumder, Somnath
    • Structural Engineering and Mechanics
    • /
    • 제52권1호
    • /
    • pp.137-147
    • /
    • 2014
  • The present paper deals with the first ply failure analysis of the laminated composite plates under various static and dynamic loading conditions. Static analysis has been carried out under patch load and triangular load. The dynamic failure analysis has been carried out under triangular pulse load. The formulation has been carried out using the finite element method and a computer code has been developed. The first order shear deformation theory has been applied in the present formulation. The displacement time history analysis of laminated composite plate has been carried out and the results are compared with those published in literature to validate the formulation. The first ply failure load for laminated composite plates with various lamination schemes under static and dynamic loading conditions has been calculated using various failure criteria. The failure index-time history analysis has also been carried out and presented in this paper.

CBTC 시스템 개발을 위한 시스템엔지니어링과 안전성 분석의 통합 (Integration of Systems Engineering and System Safety Analysis for Developing CBTC System)

  • 박중용;박영원
    • 한국철도학회논문집
    • /
    • 제6권1호
    • /
    • pp.1-9
    • /
    • 2003
  • This article proposes an integrated systems engineering and safety analysis model for safety-critical systems development. A methodology in system design for safety is considered during the early phase of the development life cycle of systems engineering process. The evolution of the design automation technology has enabled engineers to perform the model-based systems engineering. A Computer-Aided Systems Engineering(CASE) tool, CORE, is utilized to integrate the systems engineering model with a system safety analysis model. The results of the functional analysis phase can drive the analysis of the system safety. An example of Communications-Based Train Control(CBTC) system for an Automated Guided Transit(AGT) system demonstrated an application of the integrated model.

Bound of aspect ratio of base-isolated buildings considering nonlinear tensile behavior of rubber bearing

  • Hino, J.;Yoshitomi, S.;Tsuji, M.;Takewaki, I.
    • Structural Engineering and Mechanics
    • /
    • 제30권3호
    • /
    • pp.351-368
    • /
    • 2008
  • The purpose of this paper is to propose a simple analysis method of axial deformation of base-isolation rubber bearings in a building subjected to earthquake loading and present its applicability to the analysis of the bound of the aspect ratio of base-isolated buildings. The base shear coefficient is introduced as a key parameter for the bound analysis. The bound of the aspect ratio of base-isolated buildings is analyzed based on the relationship of the following four quantities; (i) ultimate state of the tensile stress of rubber bearings based on a proposed simple recursive analysis for seismic loading, (ii) ultimate state of drift of the base-isolation story for seismic loading, (iii) ultimate state of the axial compressive stress of rubber bearings under dead loads, (iv) prediction of the overturning moment at the base for seismic loading. In particular, a new recursive analysis method of axial deformation of rubber bearings is presented taking into account the nonlinear tensile behavior of rubber bearings and it is shown that the relaxation of the constraint on the ultimate state of the tensile stress of rubber bearings increases the limiting aspect ratio.

시스템엔지니어링 프로세스에 의한 국방 분석평가자료 수집체계 연구 (A study of data acquisition system of defense analysis & evaluation by systems engineering process)

  • 최순황;민성기
    • 시스템엔지니어링워크숍
    • /
    • 통권4호
    • /
    • pp.135-140
    • /
    • 2004
  • Defense analysis & evaluation includes menace analysis, validation analysis, problem analysis, scientific technical analysis, technical trad-off analysis, alternative analysis, cost analysis, etc. Reliable related data is required to perform these analysis activities efficiently. but in case of these defense analysis & evaluation data acquisition system, the data is insufficient and scattered about each organization. the data of database system is also not utilized sufficiently. abroad technical data is also low level data such as catalog or military officer's collection. therefore, this paper propose defense analysis & evaluation data acquisition system by systems engineering process. we also propose construction method of data acquisition system.

  • PDF

시스템엔지니어링 기반 산업 폐열 발전시스템 경제성 분석 모듈 설계 (Design of Economic Analysis Module for Waste Heat Recovery based on Systems Engineering Approach)

  • 김준영;차재민;박성호;신중욱;이태경
    • 시스템엔지니어링학술지
    • /
    • 제14권1호
    • /
    • pp.1-12
    • /
    • 2018
  • In the energy-guzzling industries such as steel making and cement, power plants utilizing waste heat have been attracting attention to increase energy efficiency. However, the existing economic analysis system doesn't consider the special working fluids and the cost models of the main equipment used in the waste heat recovery power plant. So it is difficult to estimate the plant economics accurately. Therefore, It is required to develop a economic analysis module that can more accurately evaluate for the power plant. In this study, the systems engineering approach was used to design and develop the module that systematically reflects the characteristics of the power plant and various requirements. Specifically, first, the special working fluids and main equipment applied to the power plant were investigated. Next, the cost models for each equipment were developed. Finally, the economic analysis module based on this was developed.

Nonlinear analysis of thin shallow arches subject to snap-through using truss models

  • Xenidis, H.;Morfidis, K.;Papadopoulos, P.G.
    • Structural Engineering and Mechanics
    • /
    • 제45권4호
    • /
    • pp.521-542
    • /
    • 2013
  • In this study a truss model is used for the geometrically nonlinear static and dynamic analysis of a thin shallow arch subject to snap-through. Thanks to the very simple geometry of a truss, the equilibrium conditions can be easily written and the global stiffness matrix can be easily updated with respect to the deformed structure, within each step of the analysis. A very coarse discretization is applied; so, in a very simple way, the high frequency modes are suppressed from the beginning and there is no need to develop a complicated reduced-order technique. Two short computer programs have been developed for the geometrically nonlinear static analysis by displacement control of a plane truss model of a structure as well as for its dynamic analysis by the step-by-step time integration algorithm of trapezoidal rule, combined with a predictor-corrector technique. These two short, fully documented computer programs are applied on the geometrically nonlinear static and dynamic analysis of a specific thin shallow arch subject to snap-through.