• Title/Summary/Keyword: Engineering Plastics

Search Result 638, Processing Time 0.027 seconds

In Silico Analysis and Biochemical Characterization of Streptomyces PET Hydrolase with Bis(2-Hydroxyethyl) Terephthalate Biodegradation Activity

  • Gobinda Thapa;So-Ra Han;Prakash Paudel;Min-Su Kim;Young-Soo Hong;Tae-Jin Oh
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.9
    • /
    • pp.1836-1847
    • /
    • 2024
  • Polyethylene terephthalate (PET), one of the most widely used plastics in the world, causes serious environmental problems. Recently, scientists have been focused on the enzymatic degradation of PET, an environmentally friendly method that offers an attractive approach to the degradation and recycling of PET. In this work, PET hydrolase from Streptomyces sp. W2061 was biochemically characterized, and the biodegradation of PET was performed using the PET model substrate bis (2-hydroxyethyl terephthalate) (BHET). PET hydrolase has an isoelectric point of 5.84, and a molecular mass of about 50.31 kDa. The optimum pH and temperature were 7.0 and 40℃, respectively. LC-MS analysis of the enzymatic products showed that the PET hydrolase successfully degraded a single ester bond of BHET, leading to the formation of MHET. Furthermore, in silico characterization of the PET hydrolase protein sequence and its predicted three-dimensional structure was designed and compared with the well-characterized IsPETase from Ideonella sakaiensis. The structural analysis showed that the (Gly-x1-Ser-x2-Gly) serine hydrolase motif and the catalytic triad (Ser, Asp, and His) were conserved in all sequences. In addition, we integrated molecular dynamics (MD) simulations to analyze the variation in the structural stability of the PET hydrolase in the absence and presence of BHET. These simulations showed the formation of a stable complex between the PET hydrolase and BHET. To the best of our knowledge, this is the first study on Streptomyces sp. W2061 to investigate the BHET degradation activity of PET hydrolase, which has potential application in the biodegradation of plastics in the environment.

Estimation of the Bulk Density for Recyclable Residential Wastes (폐기물 관리시설 설계를 위한 재활용성 생활폐기물의 겉보기밀도 평가에 관한 연구)

  • Kim, Byung-Tae;Kim, Myeong-Woon;Lee, Chang-Hae
    • Resources Recycling
    • /
    • v.26 no.6
    • /
    • pp.102-107
    • /
    • 2017
  • To estimate the bulk density applying the composition rate for recyclable residential waste, the composition rates by volume and weight basis, the bulk densities of the separated and commingled wastes were investigated four times respectively for recyclable waste of 1,800 kg transported to waste recovery facility. The bulk densities for separated wastes were $379.0kg/m^3$ of glass bottles that is highest and metals, residues, others, cans, plastics in order. The composition rates for each separated waste were changed widely depending on either volume basis or weight basis. The composition rate by weight basis as 40.6% of the glass bottles, 32.6% of the plastics were changed to 60.2% of the plastics and 8.9% of the glass bottles in that by volume basis. The bulk density of the commingled wastes applying the composition rate by volume basis showed the similar value to the measured density than by weight basis. So it was estimated that the composition rate by volume basis was appropriate for determining the bulk density of the commingled recyclable wastes.

On Fiber Orientation Characterization of CERP Laminate Layups Using Ultrasonic Azimuthal Scanners

  • Im Kwang-Hee;Hsu, David K.;Sim Jae-Gi;Yang, In-Young;Song, Sung-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.6
    • /
    • pp.566-576
    • /
    • 2003
  • Carbon-fiber reinforced plastics (CFRP) composite laminates often possess strong in-plane elastic anisotropy attributable to the fiber orientation and layup sequence. The layup orientation thus greatly influences its properties in a composite laminate. It could result in the part being rejected or discarded if the layup orientation of a ply is misaligned. A nondestructive technique would be very beneficial, which could be used to test the part after curing and to require less time than the optical test. In this paper, ultrasonic scanners were set out for different measurement modalities for acquiring ultrasonic signals as a function of in-plane azimuthal angle. The motorized scanner was built first for making transmission measurements using a pair of normal-incidence shear wave transducers. Another scanner was then built fer the acousto-ultrasonic configuration using contact transducers. A ply-by-ply vector decomposition model has been developed, simplified, and implemented for composite laminates fabricated from unidirectional plies. We have compared the test results with model data. It is found that strong agreement are shown between tests and the model developed in characterizing cured layups of the laminates.

Heat Sink of LED Lights Using Engineering Plastics (엔지니어링 플라스틱의 LED조명 방열판 적용)

  • Cho, Young-Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.61-68
    • /
    • 2013
  • As an advance study for the development of a heat sink for special purpose high power illumination, an investigation was made to find feasibility for the application of copper plated EP to a heat sink of small LED light of less than 10W installed in commercial product. In this study, the plated heat sink with EP copper was fabricated for the conventional LED light. It was used actually for finding heat radiation property and effectiveness of the heat sink accompanied with measurement of luminous intensity. The heat is radiated by transfer and dissipation only through the copper plated surface due to extremely low heat conductivity of EP in case of EP heat sink; however the total area of the plate plays the function of heat transfer as well as heat radiation in case of the aluminum heat sink. It seems that the volume difference of heat radiating material is so big that the temperature $P_1$ is 9.0~12.3% higher in 3W and 42.7~54.0% higher in case of 6W volume difference of heat radiating material is so big that the temperature $P_1$ is 9.0~12.3% higher in 3W and 42.7~54.0% higher in case of 6W even though heat transfer rate of copper is approximately 1.9 times higher than that of aluminum. It was thought that this is useful to utilize for heat sink for low power LED light with the low heating rate. Also, the illumination could be greatly influenced by the surrounding temperature of the place where it is installed. Therefore, it seems that the illumination installation environment must be taken into consideration when selecting illumination. Further study was expected on order to aims at development of an exterior surface itself made into heat radiation plate by application of this technology in future.

Structural response of composite concrete filled plastic tubes in compression

  • Oyawa, Walter O.;Gathimba, Naftary K.;Mang'uriu, Geoffrey N.
    • Steel and Composite Structures
    • /
    • v.21 no.3
    • /
    • pp.589-604
    • /
    • 2016
  • Kenya has recently experienced worrying collapse of buildings during construction largely attributable to the poor quality of in-situ concrete and poor workmanship. The situation in the country is further compounded by rapid deterioration of infrastructure, hence necessitating the development of alternative structural systems such as concrete filled unplasticized poly vinyl chloride (UPVC) tubes as columns. The work herein adds on to the very limited and scanty work on use of UPVC tubes in construction. This study presents the findings of experimental and analytical work which investigated the structural response of composite concrete filled UPVC tubes under compressive load regime. UPVC pipes are cheaper than steel tubes and can be used as formwork during construction and thereafter as an integral part of column. Key variables in this study included the strength of infill concrete, the length to diameter ratio (L/D) of the plastic tube, as well as the diameter to thickness ratio (D/2t) of the plastic tube. Plastic tubes having varying diameters and heights were used to confine concrete of different strengths. Results obtained in the study clearly demonstrate the effectiveness of UPVC tubes as a confining medium for infill concrete, attributable to enhanced composite interaction between the UPVC tube and infill concrete medium. It was determined that compressive strength of the composite column specimens increased with increased concrete strength while the same decreased with increased column height, albeit by a small margin since all the columns considered were short columns. Most importantly, the experimental confined concrete strength increased significantly when compared to unconfined concrete strength; the strength increased between 1.18 to 3.65 times the unconfined strength. It was noted that lower strength infill concrete had the highest confined strength possibly due to enhanced composite interaction with the confining UPVC tube. The study further proposes an analytical model for the determination of confined strength of concrete.

Design of CFRP-Metal Hybrid Pantograph Upper-arm (탄소섬유 복합재료-금속 하이브리드 팬터그래프 상부암 설계)

  • Jeon, Seung-Woo;Han, Min-Gu;Chang, Seung-Hwan;Cho, Yong-Hyeon;Park, Chul-min
    • Composites Research
    • /
    • v.28 no.5
    • /
    • pp.327-332
    • /
    • 2015
  • In this research, a parametric study was carried out to design a metal-carbon fiber reinforced plastics (CFRP) hybrid pantograph for weight reduction of high speed train (KTX). To design a light-weight and high-stiffness pantograph, some parts of the original steel upper arm was replaced by CFRPs with appropriate stacking sequences. For the parametric study, steel was replaced by aluminium considering structure stiffness and weight of hybrid upperarm of a pantograph. Finite element analysis (FEA) was performed for checking the structure stiffness with varying design parameters. Static vertical load stiffness and weight changing ratio were derived from real CX-PG pantograph model analyses. From the FEA results, the geometries of high-stiffness, light-weight pantograph have been suggested.

Dynamic Characteristics of Plastic Materials for Automobile Cockpit Module (자동차 칵핏 모듈용 플라스틱 소재의 열화 동특성 평가)

  • Woo, Chang Su;Park, Hyun Sung;Jo, Jin Ho;Kim, Ji Hoon;Choi, Ju Ho;Kim, Yeoung Kuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1585-1590
    • /
    • 2012
  • Engineering plastics are used in instrument panels, interior trim, and other vehicle applications, and the thermomechanical behaviors of plastic materials are strongly influenced by many environmental factors such as temperature, sunlight, and rain. As the material properties change, the mechanical parts create unexpected noise. In this study, the dynamic mechanical property changes of plastics used in automobiles are measured to investigate the temperature effects. Viscoelastic properties such as the glass transition temperature and storage modulus and loss factor under temperature and frequency sweeps were measured. The data were compared with the original ones before aging to analyze the behavior changes. It was found that as the temperature increased, the storage modulus decreased and the loss factor increased slightly.

Design of Fuzzy Clustering-based Neural Networks Classifier for Sorting Black Plastics with the Aid of Raman Spectroscopy (라만분광법에 의한 흑색 플라스틱 선별을 위한 퍼지 클러스터링기반 신경회로망 분류기 설계)

  • Kim, Eun-Hu;Bae, Jong-Soo;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1131-1140
    • /
    • 2017
  • This study is concerned with a design methodology of optimized fuzzy clustering-based neural network classifier for classifying black plastic. Since the amount of waste plastic is increased every year, the technique for recycling waste plastic is getting more attention. The proposed classifier is on a basis of architecture of radial basis function neural network. The hidden layer of the proposed classifier is composed to FCM clustering instead of activation functions, while connection weights are formed as the linear functions and their coefficients are estimated by the local least squares estimator (LLSE)-based learning. Because the raw dataset collected from Raman spectroscopy include high-dimensional variables over about three thousands, principal component analysis(PCA) is applied for the dimensional reduction. In addition, artificial bee colony(ABC), which is one of the evolutionary algorithm, is used in order to identify the architecture and parameters of the proposed network. In experiment, the proposed classifier sorts the three kinds of plastics which is the most largely discharged in the real world. The effectiveness of the proposed classifier is proved through a comparison of performance between dataset obtained from chemical analysis and entire dataset extracted directly from Raman spectroscopy.

Compressive Strength and Fire Resistance Performance of High Strength Concrete with Recycled Fiber Power from Fiber-Reinforced Plastics (재활용 FRP 미분말을 혼입한 고강도 콘크리트의 압축강도 및 내화성능)

  • Lee, Seung Hee;Park, Jong Won;Yoon, Koo Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.1
    • /
    • pp.46-51
    • /
    • 2014
  • Increasing of waste FRP (fiber reinforced plastics) has caused environmental problems. Recently, the technology of making fibers from waste FRP, which can be used to reinforce the concrete, was developed and the reinforced concretes were tested to study the structural performance. The purpose of this study is to investigate the effect of the powder, obtained together with F-fiber from the waste FRP, on the compressive strength and the fire resistance performance as in the high strength concrete. Strength tests show that the use of recycled FRP powder does not reduce the compressive strength of high strength concrete if the volume fraction of FRP powder is less than 0.7%. Electric furnace test results also show that the use of recycled FRP powder may increase the fire resistance performance of high strength concrete significantly.

Flammable Evaluation of Plastics for Living by Cone Calorimeter Test (콘칼로리미터 시험법에 의한 생활용 플라스틱의 가연성 평가)

  • You, Jisun;Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.8-13
    • /
    • 2018
  • It was conceived from the realization that there was a lack of studies on the fire risk compared to utility and importance of plastic which is widely used. In this study, the fire hazard of five types of plastic products was measured by Cone Calorimeter (ISO 5660-1). As a result, the time to ignition (TTI) of polyvinyl Chloride (PVC) plate delayed TTI (196 s), and polystyrene (PS) plate had the shortest TTI of 19 s. The total heat release (THR) of PS plate was measured at 213.07 % higher than the lowest measured PVC plate. Also, the PS plate will have 1.45 to 4.21 times higher $CO_2$ than other plastics, resulting in the highest incomplete combustion and the greatest possible damage of life. Thus, assessing the risk of fire revealed that PS plate is the most dangerous and PVC is the safest.