• 제목/요약/키워드: Engine section

검색결과 163건 처리시간 0.021초

대형 선박엔진용 크랭크축 해석을 위한 보-질량 모델 생성 기법에 관한 연구 (A Study on Efficient Generation of Beam-Mass Model for Simplification of the Crankshaft in the Large Marine Engine)

  • 서명원;심문보;김기현;김규희
    • 대한기계학회논문집A
    • /
    • 제27권10호
    • /
    • pp.1661-1666
    • /
    • 2003
  • The purpose of this study is to develop the simplified model of the crankshaft in the large marine engine for dynamic analysis. Because the actual engine system is under complex dynamic loading condition and it has multi-cylinder, the dynamic analysis is purchased at a high computation cost. In spite of this burden, the dynamic analysis must be perfonned to assure structural integrity of operating marine engine. Therefore, simplification of the analytic model is necessary for dynamic analysis. Beam-mass model, which is generated with the section property method, is the model simplified effectively. Section property method can provide desired section information by optimization technique. By applying beam-mass model to the crankshaft in the large marine engine, the usefulness of the proposed method was proven.

자동차 엔진 밸브 스프링에 사용되는 비원형 스프링 선의 단면 형상 최적화 (Shape Optimization of the Cross Section for a Non-circular Spring Wire of Valve Springs for an Automotive Engine)

  • 김도중;김영경
    • 한국자동차공학회논문집
    • /
    • 제19권2호
    • /
    • pp.117-124
    • /
    • 2011
  • Valve springs with non-circular cross-section are widely used in automotive engines. Because of the reduced height, the oval cross-section provides some merits in its install height and stress distribution. This paper introduces a new method to generate optimal shape of the non-circular cross-section. For given width and height, arbitrary shape of the cross-section are described using the Hermite spline curves. Cross-section area and maximum stress level are chosen as performance indices, and nonlinear optimization problems are formulated with inequality constraints. Compared to a production spring wire, cross-section area can be reduced about 2.4 [%] without increasing maximum stress level. In addition, the other approach gives an optimum cross-section which reduces maximum stress level of 2.0 [%] without increasing cross-section area.

CGI를 이용한 대형 디젤엔진의 구조해석 (Structural Analysis on the Heavy Duty Diesel Engine with Compacted Graphite Iron)

  • 이재옥;이영신;이현승;김재훈;전준탁;김철구
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.602-607
    • /
    • 2007
  • The heavy duty diesel engine must have a large output for maintaining excellent mobility. The compacted graphite iron (CGI) is a material currently under study for the engine demanded for high torque, durability, stiffness and fatigue. In this study, three dimensional finite element model of a heavy-duty diesel engine was developed to conduct the stress analysis by using property of CGI. The FE model of the heavy duty diesel engine section consisting with four half cylinder was selected. The heavy duty diesel engine section include cylinder block, cylinder head, liner, bearing cap, bearing and bolt. The loading conditions of engine are pre-fit load, assembly force and gas force.

  • PDF

유한요소법을 이용한 디젤 엔진의 실린더블록-라이너-가스킷-에드 구조물에 대한 해석 (An Analysis of Diesel Engine Cylinder Block-Liner-Gasket-Head Compound by Finite Element Method)

  • 김주연;안상호
    • 한국자동차공학회논문집
    • /
    • 제5권3호
    • /
    • pp.147-158
    • /
    • 1997
  • This paper presents the analysis technique and procedure of main engine components-cylinder block, cylinder liners, gasket and cylinder head-using the finite element method, which aims to assess mainly the potential of lower oil consumption in a view point of engine design and to decide subsequently the accuracy of engine design which was done. The F.E. model of an engine section consisting of one whole cylinder and two adjacent half cylinders is used, whereby the crankcase is cut off at the block bottom deck. By means of a 3-dimensional F.E. model-including cylinder block, liners, gasket, cylinder head, bolts and valve seat rings as separate parts a linear analysis of deformations and stresses was performed for three different loading conditions;assembly, thermal and gas loads. For the analysis of thermal boundary conditions also the temperature field had to be evaluated in a subsequent step.

  • PDF

지능형 자동차용 고성능 영상인식 엔진 (High-Performance Vision Engine for Intelligent Vehicles)

  • 여준기;천익재;석정희;노태문
    • 방송공학회논문지
    • /
    • 제18권4호
    • /
    • pp.535-542
    • /
    • 2013
  • 본 논문에서는 고속 및 고인식률의 성능을 갖는 영상인식 엔진 구조를 제안한다. 본 엔진은 2단계의 특징점 추출 및 분류 알고리즘을 수행하여 자동차와 보행자를 인식할 수 있다. 엔진의 인식률을 높이기 위해 HOG 특징점 값과 LBP 특징점 값을 같이 사용하여 알고리즘을 구성하였으며, 처리 속도를 높이기 위해 병렬 구조를 개선하여 하드웨어를 설계하였다. 실험결과를 통해 설계한 엔진이 초당 90프레임의 인식 처리가 가능하며 FPPW $10^{-4}$ 하에서 97.7%의 보행자 인식률을 가짐을 보인다.

연료 변경에 의한 연료분사펌프의 윤활 특성 (Lubrication Characteristics in Fuel Injection Pump with Variation of Fuel Oils)

  • 홍성호
    • Tribology and Lubricants
    • /
    • 제31권6호
    • /
    • pp.245-250
    • /
    • 2015
  • This study investigates the lubrication characteristics of fuel injection pumps with reference to different fuel oils. Medium-speed diesel engines use fuel oils with various viscosities, such as heavy fuel oil (HFO, which is a high-viscosity fuel oil) and light diesel oil (LDO, which is a low-viscosity fuel oil). When fuel oil with a low viscosity is used, both fuel oil and lubricating oil lubricate the system. Thus, the lubrication of the fuel injection pump is in a multi-viscosity condition when the fuel oil in use changes. We suggest three cases of multi-viscosity models, and divide the fuel injection pump into three lubrication sections: a, the new oil section; b, the mixed oil section; and c, the used oil section. This study compares the lubrication characteristics with variation of the multi-viscosity model, clearance. The volume of Section b does not affect the lubrication characteristics. The lubrication characteristics of the fuel injection pump are poor when high-viscosity fuel oil transfers to low-viscosity fuel oil. This occurs because the viscosity in the new oil section (i.e., Section a) dominates the lubrication characteristics of the fuel injection pump. However, the lubricant oil supply in the used oil section (i.e., Section c) can improve the lubrication characteristics in this condition. Moreover, the clearances of the stem and head significantly influence the lubrication characteristics when the fuel oil changes.

기체 에틸렌/산소 Tri-arc 회전 데토네이션 엔진 실험연구 (An Experimental Study of Tri-arc Rotating Detonation Engine Using Gaseous Ethylene/Oxygen)

  • 이은성;한형석;최정열
    • 한국추진공학회지
    • /
    • 제25권1호
    • /
    • pp.19-28
    • /
    • 2021
  • 회전 데토네이션 엔진(Rotating Detonation Engine, RDE)은 기계 장치나 유동이 아닌 데토네이션 파만이 연소실 벽을 따라 회전한다. 따라서 RDE 단면이 원형이어야 할 필요가 없으며 임의 단면의 닫힌 형상이 가능하다. 본 연구에서는 임의의 단면을 가지는 RDE의 한 가지 예로써 tri-arc 단면 형상의 RDE를 설계하였으며, 실험적으로 작동 및 성능 특성을 살펴보았다. 동압 센서와 고속카메라를 통하여 데토네이션 파의 회전을 확인하였으며, 오목 면과 볼록 면에서 질량 유량에 따른 데토네이션파의 특징을 알아보았다. 본 연구에서는 유량 조건에 따라 17.0 N에서 96.0 N의 추력 수준을 얻을 수 있었다.

케로신을 연료로 하는 10톤급 액체로켓엔진의 막 냉각에 관한 해석적 연구 (Numerical analysis on curtain cooling in Liquid Rocket Engine of 10tf-thrust Level using Kerosene as a Fuel)

  • 남궁혁준;한풍규;조원국
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2003년도 제21회 추계학술대회 논문집
    • /
    • pp.78-82
    • /
    • 2003
  • 우주발사체의 2단용 엔진으로 10톤급 케로신 재생 냉각 방식의 액체로켓엔진에 대한 보조 냉각 기구로서, 막냉각을 고려한 냉각특성에 대한 해석적 연구를 수행하였다. 연소기내에서 연소가스의 유동이 축방향으로 층류화되어 있다는 개념하에, 엔진 단면을 서로 독립적인 중심부와 외곽부로 나누며, 외곽부에는 여분의 연료를 분무시킴으로써 연소가스 온도를 낮추어 냉각채널로 전달되는 열유속량과 벽면 온도를 감소시킬 수 있었으며, 엔진의 열적 안정성을 향상시킬 수 있었다.

  • PDF

Development of Hybrid Electric Compressor Motor Drive System for Hybrid Electrical Vehicles

  • Jung, Tae-Uk
    • Journal of Power Electronics
    • /
    • 제9권6호
    • /
    • pp.960-968
    • /
    • 2009
  • This paper presents a design optimization process for interior permanent magnet synchronous motors (IPMSM) for hybrid electric compressors (HEC) which are applied to hybrid electrical vehicles. A hybrid electric compressor is composed of an electric motor driving section and an engine driving section which is connected to the engine by a pulley belt. A hybrid electric compressor driving motor requires half of the full driving power of a compressor. Even though an engine is not operated at the idling stop mode, the electric motor drives the air-conditioner compressor by itself so that the air conditioning system can produce its minimum cooling capacity. In this paper, the design optimization of an IPMSM for a 42 (V) applied voltage system is studied using the design of experiment (DOE) and response surface method (RSM) of 6sigma. The driving characteristics of this motor drive system are measured and analyzed by experiment.

스털링기관용 재생기에 관한 기초연구(I) -재생기의 열교환 유효도가 기관 출력에 미치는 영향- (Basic Study on the Regenerator of Stirling Engine (I) -The influence of the heat exchange effectiveness of the regenerator on the engine power-)

  • 김태한;이정택;이시민
    • Journal of Biosystems Engineering
    • /
    • 제27권1호
    • /
    • pp.33-38
    • /
    • 2002
  • The indicated power of Stirling engine was affected by the heat exchange effectiveness of the regenerator. The temperature difference of working fluid between the expansion and the compression space of Stilting engine depends on the heat exchange effectiveness of the regenerator. The influence of the temperature ratio of expansion space to compression space of Stirling engine on the indicated power was analyzed by using Schmidt analysis in this study. In the Stirring engine, as the temperature ratio increased, the indicated power generally decreased. Therefor, it is necessary to develope the regenerator of high effectiveness. The actual indicated power was shown 64.9 percent of the predicted indicated power in maximum and 47.2 percent of that in minimum due to increased dead volume of engine, the loss of flow friction and heat transfer in the regenerator.