• Title/Summary/Keyword: Engine oil management

Search Result 31, Processing Time 0.019 seconds

Comparison of Source Apportionment of PM2.5 Using PMF2 and EPA PMF Version 2

  • Hwang, In-Jo;Hopke, Philip K.
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.2
    • /
    • pp.86-96
    • /
    • 2011
  • The positive matrix factorization (PMF2) and multilinear engine (ME2) models have been shown to be powerful environmental analysis techniques and have been successfully applied to the assessment of ambient particulate matter (PM) source contributions. Because these models are difficult to apply practically, the US EPA developed a more user-friendly version of the PMF. The initial version of the EPA PMF model does not provide any rotational capabilities; for this reason, the model was upgraded to include rotational functions in the EPA PMF ver. 2.0. In this study, PMF and EPA PMF modeling identified ten particulate matter sources including secondary sulfate I, vehicle gasoline, secondary sulfate II, secondary nitrate, secondary sulfate III, incinerators, aged sea salt, airborne soil particles, oil combustion, and diesel emissions. All of the source profiles determined by the two models showed excellent agreement. The calculated average concentrations of $PM_{2.5}$ were consistent between the PMF2 and EPA PMF ($17.94{\pm}0.30{\mu}g/m^3$ and $17.94{\pm}0.30\;{\mu}g/m^3$, respectively). Also, each set of estimated source contributions of the PMF2 and EPA PMF showed good agreement. The results from the new EPA PMF version applying rotational functions were consistent with those of PMF2. Therefore, the updated version of EPA PMF with rotational capabilities will provide more reasonable solutions compared with those of PMF2 and can be more widely applied to air quality management.