• Title/Summary/Keyword: Engine load observer

Search Result 5, Processing Time 0.02 seconds

Engine Control TCS using Throttle Angle Control and Estimated Load Torque (스로틀 개도 제어와 부하토크 추정을 이용한 엔진 제어 방식 TCS)

  • 강상민;윤마루;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.139-147
    • /
    • 2004
  • The purpose of engine control TCS is to regulate engine torque to keep driven wheel slip in a desired range. In this paper, engine control TCS using sliding mode control law based on engine model and estimated load torque is proposed. This system includes a two-level controller. Slip controller calculates desired wheel torque, and engine torque controller determines throttle angle for engine torque corresponding to desired wheel torque. Another issue is to measure load torque for model based controller design. Luenberger observer with state variables of load torque and engine speed solves this problem as estimating load torque. The performance of controller and observer is certificated by simulation using 8-degree vehicle model, Pacejka tire model, and 2-state engine model. The simulation results in various maneuvers during slippery and split road conditions showed that acceleration performance and ability of the vehicle with TCS is improved. Also, the load torque observer could estimate real load torque very well, so its performance was proved.

ENGINE CONTROL USING SPEED FEEDBACK

  • Stotsky, A.;Solyom, S.;Kolmanovsky, I.V.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.477-481
    • /
    • 2007
  • In this article we present a new, reference model based, unified strategy for engine control. Three main modes are considered: first is the driver control mode where the driver controls the engine via the pedal position; second is the dashpot mode, that is, when the driver takes his foot off the pedal; and, lastly is the idle speed control mode. These modes are unified so that seamless transitions between modes now becomes possible. The unification is achieved due to the introduction of a reference model for the engine speed whereby only the desired engine speed is different for different modes while the structure of the control system remains the same for all the modes. The scheme includes an observer that estimates unknown engine load torque. A proof of robustness with respect to unknown load disturbances both within the operating modes and during intermode transitions is given.

Indicated and Load Torque Estimation of SI-Engine using Cylinder Pressure Sensor (실린더 압력센서를 사용한 가솔린 엔진의 도시토크와 부하토크의 추정)

  • 백종탁;박승범;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.1-6
    • /
    • 2003
  • The torque is an important measure that represents the performance of a particular engine. Furthermore the information of engine torque can be used as a primary feedback parameter in modem engine management system. In this paper, a methodology is proposed for torque estimation of SI-engine. Since the proposed method uses cylinder pressure sensor, the torque can be estimated in a simple manner. The indicated torque is estimated from the peak pressure and its location, and the load torque is observed by the state observer based on the estimated indicated torque. The proposed method is accurate and robust against the variations that affect the torque production such as spark timing, mass air flow and others. This torque estimation method may be an alternative solution to the use of engine torque maps in a modem torque-based engine management system.

Design of Optimal Idle Speed Controller by Sliding Mode Observer (슬라이딩 모드 관측기에 의한 최적의 공회전 제어기 설계)

  • Lee, Young-Choon;Lee, Seong-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.10
    • /
    • pp.161-167
    • /
    • 2001
  • This paper presents an approach to nonlinear engine idle controller and intake manifold absolute pressure(MAP) observer based on mean torque production model. A stable engine idle speed is important in that the unstable engine Idle mode can make engine to drooping or stall state. A sliding fuzzy controller has been designed to control engine idle speed under load disturbance. A sliding observer is also developed to estimate the intake manifold absolute pressure and compared with the actual MAP sensor value. The sliding mode observer has shown good robustness and good tracking performance. The inputs of sliding fuzzy controller are the errors of rpm and MAP. The output is a duty cycle(DC) for driving a idle speed control valve(ISCV).

  • PDF

A Study on the Design of the Optimal Control System for Electric Driving Digital Governor (전기구동방식 디지털 가버너의 최적제어계 설계에 관한 연구)

  • Kim, Seong-Hwan;Ra, Jin-Hong;Yang, Ju-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.1
    • /
    • pp.88-100
    • /
    • 1990
  • Since sea state changes engine load instantaneously, the speed governing apparatus is essential for marine engine to maintain constant speed regardless of the load. As governing apparatuses, mechanical, pneumatic, and electric governors have been employed. But, recently, according to the introduction of low speed-ling stroke engines to increase thermal efficiency, the development of governor which has better response characteristics is requisite. In this paper, to design the governor that meets above requirement, author made a performance test for the existing PID control digital governor with the aid of computer simulation, and investigated digital governor applying the optimal control algorithm, then, executed computer simulation by the same way. As the result of simulations, found that the former let engine have large overshoot and long settling time at low speed, on the other hand, the latter made engine have better response. If we design and invent a good observer for delay time element so that the optimal control theory can be applied, better governor will be expected.

  • PDF