• Title/Summary/Keyword: Engine key on off

Search Result 11, Processing Time 0.026 seconds

A Study on Vibration Characteristics of Engine Mount System of a Medium Duty Truck at the Key On/Off (중형트럭 시동 시 엔진마운팅 시스템의 진동 특성 연구)

  • Kuk, Jong-Young;Lim, Jung-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.97-102
    • /
    • 2008
  • The vibration of a vehicle, which is caused by and transmitted from the engine, has significant effect on the ride comfort and the dynamic characteristics of the engine mount system have direct influence on the vibration and noise of the vehicle. This paper examines the body shake caused by the engine excitation force on engine key on/off of a medium truck by experiment and simulation. The analysis model consists of the engine, a body including the frame, front and rear suspensions and tires. The force element between the body and the suspension is modeled as a combination of a suspension spring and a damper. The engine shake obtained from the experiment was compared with the result of the computer simulation, and by using the verified computer model, parametric study of the body shake on engine key on/off is performed with changing the stiffness of an engine mount rubber, the engine mount angle, and the position of engine mounts.

The vibration Analysis in Case of Key-off of a Jeep by Using CAD/CAE (CAD/CAE을 이용한 승용 Jeep의 Key-off시 진동 해석)

  • An, Gie-Won;Song, Sang-Kee;,
    • The Journal of the Acoustical Society of Korea
    • /
    • v.11 no.4
    • /
    • pp.5-13
    • /
    • 1992
  • The vibration of a vehicle, which is caused by and transmitted from the engine, has significant effect on the ride comfort and the dynamic characteristics of the engine mount system has direct influence on the vibration and noise of the vehicle. This paper examines the body shake caused by the engine excitation force on engine key-off of a jeep by experiment and computer simulation using a general purpose mechanical system program, DADS. The computer simulation model consists of the engine, body including frame, and front and rear axles and each axle has right and left tires. The force element between body and suspension is modeled as a combination of suspension spring and damper, and the unsprung mass has roll and pitch motion. The body shake obtained from experiment was compared with the result of computer simulation. Parametric study of the body shake on engine key-off is performed with changing the stiffness of engine mount rubber, the engine mount installation angle and position of engine mounts by using the verified computer simulation model.

  • PDF

Engine Mounting System Optimization for Improve NVH (NVH 향상을 위한 엔진 설치 시스템 최적화)

  • Kim, Jang-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.4665-4671
    • /
    • 2013
  • Engine mounting system is the most responsible system for NVH performance of vehicle. The vibration at idle shake, road shake, Key ON/OFF, gear shift tuned by the engine mount position and stiffness. Previously described Engine mounting system theory investigated and summarized in this paper. Decoupling of the Power train rigid mode and Reducing the angle between Torque-Roll-Axis and Elastic-roll-Axis is starting point of optimization. Multi-optimization analysis was performed because of variety simulation case and FE-model. Eventually, Find the best mount location and the stiffness has improved the performance of the vehicle NVH.

Estimation of WIGs' Take-off State Based on Planing Theory (활주선의 정상 활주 상태 모델을 이용한 WIG선의 이수 상태 추정)

  • Yeo, Dong-Jin;Yoon, Hyeon-Kyu;Lee, Chang-Min
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.5
    • /
    • pp.534-541
    • /
    • 2007
  • This paper suggests the mathematical method for the estimation of the required engine output for WIG crafts. The engine size of a WIG craft Is a key parameter in the design stage, because WIGs should overcome the hump drag during the take-off. Therefore, it is very important for a WIG designer to estimate required power and state change during take-off. The mathematical method was developed based on the steady planing state model of a planing boat. Through numerical calculations on various take-off states, it was found that the suggested method could give reasonable estimation of required power and state change during take-off.

Technical Review of the Proposed Engines for SUAV (스마트무인기 후보엔진 기술검토)

  • Jun Yong-Min;Yang Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.1
    • /
    • pp.64-71
    • /
    • 2006
  • For SUAV is required to have the capacity of VTOL and fast forward flight, the SUAV development program has decided to adopt the tiltrotor mechanism which includes helicopter and turboprop mechanisms. From the engine point of view, the key engine parameters such as engine operating mechanism, engine control scheme, the dynamics characteristic of power train, engine intake/exhaust concept, and engine installation requirements should fulfill the requirements of the two different mechanisms, helicopter and turboprop. And for the maximum efficiency of the rotor, rotational speed for the two modes are 20% different, the power train shall find a way to make it so. Meeting these specific requirements for the tiltrotor mechanism, this research begins with a conventional OTS(off-the-shelf) turboshaft engine survey and minimizes engine modification to develop an economical propulsion system. The engine technical review has been performed on the basis of those requirements and capabilities.

Study on Shortening Light-Off Time of Three Way Catalyst and Reduction of Harmful Emissions with Exhaust Synthetic Gas Injection(ESGI) Technology during Cold Start of SI Engines (가솔린 기관의 냉간시동 조건에서 합성가스 배기분사 기술에 의한 촉매의 활성화 온도 도달시간 단축 및 유해배출물 저감에 관한 연구)

  • Cho, Yong-Seok;Lee, Seang-Wock;Won, Sang-Yeon;Song, Chun-Sub;Park, Young-Joon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.94-101
    • /
    • 2008
  • Since regulations of exhaust emissions are continuously reinforced, studies to reduce harmful emissions during the cold start period of SI engines have been carried out very extensively worldwide. During the cold start period, raising the temperature of cold exhaust gas is a key strategy to minimize the light-off time of three way catalysts. In this study, a synthetic gas containing a large amount of hydrogen was injected into the exhaust manifold to raise the exhaust gas temperature and to reduce harmful emissions. The authors tried to evaluate changes in exhaust gas temperature and harmful emissions through controlling the engine operating parameters such as ignition timings and lambda values. Also the authors investigated both combustion stability and reduction of harmful emissions. Experimental results showed that combustion of the synthetic gas in the exhaust manifold is a very effective way for solving the problems of harmful emissions and light-off time. The results also showed that the strategy of retarded ignition timings and increased air/fuel ratios with ESGI is effective in raising exhaust gas temperature and reducing harmful emissions. Futhermore, the results showed that engine operating parameters ought to be controlled to lambda = 1.2 and ignition timing = $0{\sim}3^{\circ}$ conditions to reduce harmful emissions effectively under stable combustion conditions.

ARISING TECHNICAL ISSUES IN THE DEVELOPMENT OF A TRANSPORTATION AND STORAGE SYSTEM OF SPENT NUCLEAR FUEL IN KOREA

  • Yoo, Jeong-Hyoun;Choi, Woo-Seok;Lee, Sang-Hoon;Seo, Ki-Seog
    • Nuclear Engineering and Technology
    • /
    • v.43 no.5
    • /
    • pp.413-420
    • /
    • 2011
  • In Korea, although the concept of dry storage system for PWR spent fuels first emerged in the early 1990s, wet storage inside nuclear reactor buildings remains the dominant storage paradigm. Furthermore, as the amount of discharged fuel from nuclear power plants increases, nuclear power plants are confronted with the problem of meeting storage capacity demand. Various measures have been taken to resolve this problem. Dry storage systems along with transportation of spent fuel either on-site or off-site are regarded as the most feasible measure. In order to develop dry storage and transportation system safety analyses, development of design techniques, full scale performance tests, and research on key material degradation should be conducted. This paper deals with two topics, structural analysis methodology to assess cumulative damage to transportation packages and the effects of an aircraft engine crash on a dual purpose cask. These newly emerging issues are selected from among the many technical issues related to the development of transportation and storage systems of spent fuels. In the design process, appropriate analytical methods, procedures, and tools are used in conjunction with a suitably selected test procedure and assumptions such as jet engine simulation for postulated design events and a beyond design basis accident.

A Study on the Effects of Intake Port Geometry on In-Cylinder Swirl Flow Field in a Small D.I. Diesel Engine (직접분사식 소형 디젤엔진의 실린더내 스월 유동장에 미치는 흡기포트의 형상에 관한 연구)

  • Lee, Ki-Hyung;Han, Yong-Taek;Jeong, Hae-Young;Leem, Young-Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.38-45
    • /
    • 2004
  • This paper studies the effects of intake port configuration on the swirl that is key parameter in the flow field of direct injection diesel engines. In-cylinder flow characteristics is known to have significant effects on fuel air mixing, combustion and emissions. To investigate the swirl flow generated by various intake ports, steady state flow tests were conducted to evaluate the swirl. Helical port geometry, SCV shape and bypass were selected as the design parameters to increase the swirl flow and parametric study was performed to choose the optimal port shape that would generate a high swirl ratio efficiently. The results revealed that a key factor in generating a high swirl ratio was to suitably control the direction of the intake air flow passing through the valve seat. For these purposes, we changed the distance of helical and tangential port as well as installed bypass near the valve seat and the effects of intake port geometry on in-cylinder flow field were visualized by a laser sheet visualization method. From the experimental results, we found that the swirl ratio and mass flow rate had a trade off relation. In addition, the result indicates that the bypass is a effective method to increase the swirl ratio without sacrificing mass flow rate.

Introduction of Thrust Vector Control System and Control Valve Development for Space Launch Vehicles (우주발사체용 추력벡터제어 시스템 및 제어밸브류 개발 현황 소개)

  • Lee, Je-Dong;Park, Bong-Kyo;Park, Ho-Youl;Kim, Sang-Beom;Jun, Pil-Sun;Jang, Ki-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.613-615
    • /
    • 2009
  • This paper is to introduce Hanwha Aerospace R&D Center's development status of TVC(Thrust Vector Control) system and control valves for Korean space launch vehicles. With the successful development of KSR-III TVC system, Hanwha have developed TVC system and RCS control valves for KSLV-I. Also, in the advance research area of KSLV-II, Hanwha have participated in LOx and fuel flow control valves and LOx shut-off valve development in the engine supply system. Based on the accumulated experiences and technologies in the aerospace key components and system development, Hanwha will make an important contribution to KSLV-II development in the future.

  • PDF

Safety Assessment on Dispersion of BOG in LNG Fueling Station (LNG 자동차 충전소에서 BOG 확산에 따른 안전성평가 연구)

  • Lee, Seung Hyun;Kang, Seung Kyu;Lee, Young Soon
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.4
    • /
    • pp.76-82
    • /
    • 2012
  • A diesel-Liquefied natural gas(LNG) combustion engine truck fleet demonstration project had been carried out and commercial expansion project was launched. The key issues of these projects are the safety of LNG fuel station and the reduction of natural gas relief. When LNG is fueled to LNG vehicles the heat is input in the LNG system. The LNG in the fueling system was boiled and the vapor of LNG is vented through the safety devices. The temperature of the vapor of LNG is $-108^{\circ}C$ and density is heavier than air. It can be dispersed to downside of the fuel station. The safety evaluation is carried out using CFD program and risk assessment program for the vapor of LNG in the LNG vehicle fuel station. The hazards are identified and suggested the operation instruction to reduce the relief of LNG vapor.