• Title/Summary/Keyword: Engine Supply System

Search Result 297, Processing Time 0.032 seconds

Observation Studies on Field Operation of a Exhausted Heat Recovery System for a 300 kW Class Small Gas Engine Cogeneration System (300 kW급 소형 열병합발전기용 배열회수 시스템의 실증운전 성능분석에 관한 연구)

  • Kim, Min-Sung;Baik, Young-Jin;Park, Seong-Ryong;Ra, Ho-Sang
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.4
    • /
    • pp.248-257
    • /
    • 2010
  • An exhausted heat recovery system for a small gas engine cogeneration plant was investigated. The system was designed and built in a 300 kW class cogeneration demonstrative system. The basic performance was tested depending on load variation, and installed to a field site as a bottoming heat and power supply system. The exhaust gas heat exchangers (EGHXs) in shell-and-tube type and shell-and-plate type were tested. The entire efficiency of the cogeneration system was estimated between 85 to 90% under the 100% load condition, of which trend appears higher in summer due to the less thermal loss than in winter. Power generation efficiency and thermal efficiency was measured in a range of 31~33% and 54~57%, respectively.

A Multi-Phase Decision Making Model for Supplier Selection Under Supply Risks (공급 리스크를 고려한 공급자 선정의 다단계 의사결정 모형)

  • Yoo, Jun-Su;Park, Yang-Byung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.4
    • /
    • pp.112-119
    • /
    • 2017
  • Selecting suppliers in the global supply chain is the very difficult and complicated decision making problem particularly due to the various types of supply risk in addition to the uncertain performance of the potential suppliers. This paper proposes a multi-phase decision making model for supplier selection under supply risks in global supply chains. In the first phase, the model suggests supplier selection solutions suitable to a given condition of decision making using a rule-based expert system. The expert system consists of a knowledge base of supplier selection solutions and an "if-then" rule-based inference engine. The knowledge base contains information about options and their consistency for seven characteristics of 20 supplier selection solutions chosen from articles published in SCIE journals since 2010. In the second phase, the model computes the potential suppliers' general performance indices using a technique for order preference by similarity to ideal solution (TOPSIS) based on their scores obtained by applying the suggested solutions. In the third phase, the model computes their risk indices using a TOPSIS based on their historical and predicted scores obtained by applying a risk evaluation algorithm. The evaluation algorithm deals with seven types of supply risk that significantly affect supplier's performance and eventually influence buyer's production plan. In the fourth phase, the model selects Pareto optimal suppliers based on their general performance and risk indices. An example demonstrates the implementation of the proposed model. The proposed model provides supply chain managers with a practical tool to effectively select best suppliers while considering supply risks as well as the general performance.

Review of Propellant Vibration and Control of Liquid Rocket Fuselage Feeding System (액체로켓 기체공급계의 추진제 진동특성 및 제어기술 동향)

  • Cho, Nam-Kyung;Kho, Hyun-Seok;Han, Sang-Yeop;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.89-94
    • /
    • 2010
  • Fuselage propellant feeding system should supply propellants to engine with required flow rate, temperature and pressure. Propellant vibration in engine and feeding line changes feeding characteristics, and frequently inhibits to satisfy the required feeding requirements. Sloshing and POGO vibration are known to be the major vibration phenomena. Concerning sloshing and POGO, vehicle control and structural dynamics aspects are extensively studied, whereas, its effect on propellant feeding performance is not clearly understood. This paper focuses on the deviation of required feeding performance due to propellant vibration. Overall characteristics of propellant vibration and its effect on propellant supply to engine are reviewed and control mechanism for suppressing vibration is introduced.

  • PDF

A Study on Engine Performance of the Ignition Spark Timing Conversion for LPG/Gasoline Bi-fuel Vehicle (LPG / 가솔린 겸용차량의 점화시기 변환에 의한 엔진성능고찰)

  • Chun, Bongjun;Park, Myungho
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.3
    • /
    • pp.39-47
    • /
    • 2011
  • In a bi-fuel engine using gasoline and LPG fuel, with the current ignition timing for gasoline being used, the optimum performance could not be taken in LPG fuel supply mode. The ignition timing in LPG fuel mode must be advanced much more than that of gasoline mode for the compensation of its higher ignition temperature. The purpose of this study is to investigate how the ignition spark timing conversion influences the engine performance of LPG/Gasoline Bi-Fuel engine. In order to investigate the engine performance during combustion, engine performance are sampled by data acquisition system, for example cylinder pressure, pressure rise rate and heat release rate, while change of the rpm(1500, 2000, 2500) and the ignition timing advance($5^{\circ}$, $10^{\circ}$, $15^{\circ}$, $20^{\circ}$). As the result, between 1500rpm, 2000rpm and 2500rpm, the cylinder pressure and pressure rise rate was increased when the spark ignition was advanced but pressure rise rate at $20^{\circ}$ was smaller value.

A Study on the Characteristics of Accumulator Type Fuel Injection System with Spool Valve (스풀밸브를 이용한 축압식 연료분사계의 작동특성에 관한 연구)

  • Choi, Y.H.;Lee, J.H.;Yoon, S.J.
    • Journal of ILASS-Korea
    • /
    • v.6 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • Fuel injection system is very important in diesel combustion. Recently electronic control of fuel injection system and common rail systems are introduced to reduce the emission and to increase the energy efficiency from diesel engine by control of the injection timing and duration. In this study, evaluation possibility of the system for electronic control by spool valve, one of the accumulator type injection systems with spool valve using solenoid was composed and the operating characteristics were investigated to evaluate the effects of spring coefficient, initial spring force, solenoid driving time, fuel supply pressure on the injection timing and duration. We could confirm the capability that diesel injection was electronically controlled by spool valve.

  • PDF

Benefit-Cost Analysis in Accordance with Replacement of Electrical Cooling System by Gas Cooling System using the California Standard Test (캘리포니아 표준테스트 방법을 사용한 전기냉방기기의 가스냉방기기 대체에 따른 편익비용분석)

  • Park, Rae-Jun;Song, Kyung-Bin;Won, Jong-Ryul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1774-1781
    • /
    • 2012
  • There are some efforts to improve the performance of electrical heat pump(EHP) and replace it with an alternative cooling equipment such as gas engine-driven heat pump(GHP), a gas cooling equipment, in order to solve the problem of summer electricity supply through reducing the summer electricity peak. This paper analyzes cost-benefit in accordance with replacement of electrical cooling system by gas cooling system using california standard test and sensitivity analysis of some scenarios.

Computational Analysis of an LOx Supply Line System of an Liquid Rocket Engine (액체로켓엔진 산화제 배관 시스템 전산유동해석)

  • Moon, In-Sang;Moon, Il-Yoon;Lee, Soo-Yong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.4
    • /
    • pp.693-702
    • /
    • 2009
  • A computational fluid analysis was performed on an LOx line system of a liquid rocket engine. The model was created with 3D CAD and imbedded to the 3D CFD program. Before the full scale analysis on the system was carried out, each components with simplified models was analyzed to save time and cost. As a result, the inlet pressure of the gas generator should be compensated with a certain device unless the inlet pressure of the line system is sufficiently high. The flow pattern of the exit of the system was dependant upon the location of the orifice as well as the size. As a whole the line system analyzed met the requirements, and will be tested and confirmed after being manufactured.

Modeling and Validation of a Liquid Propellant Supply System in Steady States (액체 추진제 공급시스템의 정특성 모델링 및 검증)

  • Lee, Juyeon;Ki, Wonkeun;Huh, Hwanil;Roh, Tae-seong;Lee, Hyoung Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.6
    • /
    • pp.143-154
    • /
    • 2020
  • The mathematical modeling applying experimental coefficients to a conventional model was validated through the hydraulic test for the components and the full system of a small-sized liquid rocket engine's propellant supply system. According to the simulations, pressures difference for the fluid resistance components and the pump were mainly predicted. In order to improve the modeling accuracy, the loss coefficients obtained by the empirical method were applied to the modeling. Based on the governing equation of the flow or the well known empirical equation, the method of deriving the empirical coefficients was summarized and the coefficients were presented for the commercial products used in this study. The prediction results by modeling were in good agreement with the experimental data. Through the comparison with the experimental data, the factors affecting the accuracy of the simulation were analyzed and improving methods of the accuracy was proposed.

Construction of High-Pressure Pressurized Liquid Nitrogen Supply Facilities (고압의 가압식 액체질소 공급 설비 구축)

  • Shin, Minkyu;Oh, Jeonghwa;Kim, Seokwon;Ko, Youngsung;Chung, Yonggahp
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.5
    • /
    • pp.26-32
    • /
    • 2020
  • In this study, a facility was constructed to supply liquid nitrogen to simulate combustion instability in a liquid rocket combustor. The pressurization and supply performances were predicted and verified through different experiments. The liquid nitrogen supply system was composed of a pressurized supply system, and a dome regulator was used to adjust the pressure of the pressurant. A cavitation venturi was used to control the mass flow rate of liquid nitrogen. The condition of liquid nitrogen supply was a mass flow rate of 2.55 kg/s and the venturi inlet pressure was above 100 bar. Based on the initial experiment, it was observed that the predicted amount of the pressurant was not sufficiently supplied and the target pressure was not supplied due to a drop in tank pressure. Through the modification of the established facilities, the target mass flow rate was successfully supplied and the cryogenic liquid nitrogen supply facility was verified.

Gas Turbine Engine Based Hybrid Propulsion System Modeling and Simulation (가스터빈엔진 기반 하이브리드 추진시스템 모델링 및 시뮬레이션)

  • Lee, Bohwa;Kim, Chuntaek;Jun, Sangook;Huh, Jae-Sung;Kim, Jae-Hwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.3
    • /
    • pp.1-9
    • /
    • 2022
  • The aircraft targeted in this study is a vertical take-off and landing aircraft with 4 to 5 passengers, and the propulsion system for the aircraft is a distributed hybrid propulsion system that uses a gas turbine engine and a battery pack as the main power source to supply the power required by multiple motors. In this study, a design/analysis platform for a hybrid propulsion system was developed using the MATLAB/Simulink program based on the preliminary design results. Through simulation analysis, the output characteristics and operating range of each power source according to the mission profile were confirmed, and through this, the feasibility of the preliminary design result was confirmed.