• Title/Summary/Keyword: Engine Mount

Search Result 195, Processing Time 0.032 seconds

Active Vibration Control of Automotive Engine Mount Using MR Fluid and Piezostack (MR 유체와 압전 작동기를 이용한 자동차 엔진 마운트의 능동진동제어)

  • Choi, Sang-Min;Nguyen, Vien-Quoc;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.237-242
    • /
    • 2008
  • This paper presents vibration control of an active hybrid engine mount featuring magneto-rheological (MR) fluid and a piezostack actuator. On the basis of the conventional passive rubber mount, MR fluid is adopted to improve isolation performance at resonant frequencies, whereas the piezostack actuator is adopted for performance improvement at non-resonant frequencies, especially at high frequencies. Based on some particular practical requirements of engine mounts, the proposed mount is designed and manufactured. The characteristics of rubber element, piezostack actuator and MR fluid are verified for system analysis and controller synthesis. The model of the proposed mount with a supported mass (engine) is established. In this work, a sliding mode controller is synthesized for the mount system to reduce vibrations transmitted from the engine in a wide frequency range. Computer simulations are performed to evaluate the performances of the proposed active engine mount in time and frequency domains.

  • PDF

Vibration Mode of the Drivesystem Considered the Vehicle Body's Dynamic Characteristics (차체의 동특성을 고려한 구동시스템의 진동모드)

  • 유충준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.148-159
    • /
    • 2004
  • This paper discusses vibration mode of the drivesystem considered the vehicle body's dynamic characteristics to study the influence of the vehicle body's dynamic characteristics on the vibration mode of the engine mount system and the ride quality of a vehicle. The simulation model consists of the engine mount system, the powertrain and the rigid or elastic vehicle body. Variables used in this study are the stiffnesses of an engine mount system and the excitation forces. The Goals of the study are analyzing both the vibration transmitted to the vehicle body including the drivesystem and the influence of the vehicle body's dynamic characteristics on the engine mount system. The mode of drivesystems with a rigid and a elastic vehicle body was compared. From the result of the forced vibration analysis for the drivesystem with a elastic vehicle body, it is shown that the vehicle body's dynamic characteristics influence on the engine mount system reciprocally.

An Experimental Study of Engine Mount Optimization to Improve Noise and Vibration Quality of F.R. Vehicle (후륜구동 차량의 소음 진동 성능향상을 위한 엔진마운트 최적설계에 관한 실험적 연구)

  • 이준용;김찬묵
    • Journal of KSNVE
    • /
    • v.7 no.4
    • /
    • pp.681-688
    • /
    • 1997
  • The purpose of engine mount system is to reduce the noise and vibration caused by engine vibration, and to decouple the roll and bounce mode at idle. To reduce the noise and vibration level in a vehicle, it is important to make the design optimization of engine mount system that consider the moment of inertia and inclination of mount rubber. As a result, according to the definition of Torque Roll Axis (TRA), the vibration axis at idle must be on the TRA or very close to it. In this paper, we studied the effect of the design optimization of engine mount system. And we have achieved good improvements in noise and vibration quality of F.R. vehicle.

  • PDF

Optimizing and Identification of Design Parameters of a Cylindrical Hydraulic Engine Mount by an Optimization Method (최적화 기법에 의한 원통형 유체 엔진마운트의 설계변수 동정 및 최적화)

  • Ahn, Young-Kong
    • Journal of Power System Engineering
    • /
    • v.21 no.3
    • /
    • pp.66-73
    • /
    • 2017
  • In order to identify the design parameters of a hydraulic engine mount with a nonlinear characteristics, an experimental method has been used generally. The method takes a considerable time and expense because of preparing an experimental apparatus, conducting a test, and analyzing results. Therefore, this paper presents a simple method to identify the design parameters of a cylindrical hydraulic engine mount, and optimize the design parameters. The physical model and mathematical equations of the mount were derived, and values of the design parameters of the mount were identified by optimization method with minimizing difference between the analytical results with the equations and the experimental results. This method is more simpler than the conventional experiment method and identify successfully the design parameters. In addition, the technique can optimize the design parameters of the mount to improves the isolation performance of the mount.

Active Vibration Control of Automotive Engine Mount Using MR Fluid and Piezostack (MR 유체와 압전 작동기를 이용한 자동차 엔진 마운트의 능동진동제어)

  • Choi, Sang-Min;Nguyen, Vien-Quoc;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.11
    • /
    • pp.1150-1156
    • /
    • 2008
  • This paper presents vibration control of an active hybrid engine mount featuring a magneto-rheological(MR) fluid and a piezostack actuator. The MR fluid is adopted to improve isolation performance at resonant frequencies, while the piezostack actuator is adopted for performance improvement at non-resonant frequencies, especially at high frequencies. Based on some particular practical requirements of engine mounts, the proposed mount is designed and manufactured. The characteristics of rubber element, piezostack actuator and MR fluid are verified for system analysis and controller synthesis. The dynamic model of the proposed mount with a supported mass (engine) is established. In this work, a sliding mode controller is synthesized for the mount system to reduce vibrations transmitted from the engine in a wide frequency range. Computer simulations are performed to evaluate control performances of the proposed active engine mount in time and frequency domains.

Modeling and Control of an Engine Mount Using ER Fluids and Piezoactuators (ER 유체와 압전작동기를 이용한 엔진마운트의 모델링 및 제어)

  • Choi, Seung-Hoon;Choi, Young-Tai;Choi, Seung-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.2
    • /
    • pp.500-510
    • /
    • 1996
  • This paper presents a new prototype of an engine mount for a passenger vehicle featuring ER(elector-rheological) fluids and piezoactuators. Conventional rubber mounts and various types of passive or semi-active hydraulic engine mounts have their own functional aims on the limited frequency band in the board engine operating frequency range. However, the proposed engine mount covers all frequency range of the engine operation. A mathematical model of the proposed engine mount is derived using the bond graph method which is inherently domain, the ER fluid is activated upon imposing electric field for vibration isolation while the piezoactuator. Computer control electric fluid for the ER fluid H.inf. cotrol technique is adopted for the piezoactuator. Computer simulation is undertaken in order to demonstrate isolation efficiency of the engine mount over wide operating frequency range.

Active Vibration Control Experiment of Cantilever Using Active Linear Actuator for Active Engine Mount (능동 엔진 마운트 제어용 Active Linear Actuator를 이용한 외팔보 능동진동제어 실험)

  • Yang, Dong-Ho;Kwak, Moon-K.;Kim, Jung-Hoon;Park, Woon-Hwan;Sim, Ho-Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.12
    • /
    • pp.1176-1182
    • /
    • 2010
  • Vibrations caused by automobile engine are absorbed mostly by a passive-type engine mount. However, user specifications for automobile vibrations require more stringent conditions and higher standard. Hence, active-type engine mount have been developed to cope with such specifications. The active-type engine mount consists of sensor, actuator and controller where a control algorithm is implemented. The performance of the active engine mount depends on the control algorithm if the sensor and actuator satisfies the specification. The control algorithm should be able to suppress persistent vibrations caused by the engine which are related to engine revolution. In this study, three control algorithms are considered for suppressing persistent vibrations, which are the positive position feedback control algorithm, the strain-rate feedback control algorithm, and the modified higher harmonic control algorithm. Experimental results show that all the control algorithms considered in this study are effective in suppressing resonant vibrations but the modified higher harmonic controller is the most effective controller for non-resonant vibrations.

A Practical Research of Engine Mount Optimization in a Construction Equipment (건설기계 엔진마운트 최적설계에 관한 실용적 연구)

  • Shin, Myung-Ho;Joo, Kyung-Hoon;Kim, Woo-Hyung;Kim, In-Dong;Kang, Yeon-June
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.792-796
    • /
    • 2013
  • A practical process to optimize engine mounts on construction equipment is presented in this research. Transmitted force from the engine is estimated by using stiffness of the mount rubber which varies with frequency, amplitude and pre-load, and by the engine excitation force that comes from piston mass and gas pressure and so on. The transmitted force is measured through TPA(Transfer Path Analysis) and is then compared with the estimated force. The optimum mount position and stiffness are solved using MATLAB. The result shows the improvement on engine mount vibration.

  • PDF

A Study on the Characteristics of Elastomers for Vibration Isolation of Sports Utility Vehicle (스포츠 레저용 차량의 진동절연을 위한 고무제품의 특성에 관한 연구)

  • 사종성;김찬묵
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.129-137
    • /
    • 2002
  • Elastomers, which are used engine mounts and body mount rubbers, are traditionally designed for NVH use in vehicles, and for vibration isolation in specific frequency range. According to the measurement of the characteristics of the SUV's engine mounts, there are variability in same engine mount properties. Static and dynamic stiffness of the SUV's engine mounts are changed due to the driving miles accumulated. The pre-load of body mount rubbers are changed due to the empty vehicle weight, passenger's weight and gross vehicle weight. And the dynamic stiffness of body mount rubbers are changed very hard above 150Hz frequency range.

A Study on Vibration Characteristics of Engine Mount System of a Medium Duty Truck at the Key On/Off (중형트럭 시동 시 엔진마운팅 시스템의 진동 특성 연구)

  • Kuk, Jong-Young;Lim, Jung-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.97-102
    • /
    • 2008
  • The vibration of a vehicle, which is caused by and transmitted from the engine, has significant effect on the ride comfort and the dynamic characteristics of the engine mount system have direct influence on the vibration and noise of the vehicle. This paper examines the body shake caused by the engine excitation force on engine key on/off of a medium truck by experiment and simulation. The analysis model consists of the engine, a body including the frame, front and rear suspensions and tires. The force element between the body and the suspension is modeled as a combination of a suspension spring and a damper. The engine shake obtained from the experiment was compared with the result of the computer simulation, and by using the verified computer model, parametric study of the body shake on engine key on/off is performed with changing the stiffness of an engine mount rubber, the engine mount angle, and the position of engine mounts.