• 제목/요약/키워드: Engine Intake

검색결과 758건 처리시간 0.024초

직분식 예혼합 압축착화 디젤엔진의 운전조건과 연료조성에 따른 연소 및 배기 특성 (The Characteristics of Combustion and Exhaust Emission according to Operating Condition and Fuel Composition in a Direct Injection Type HCCI Diesel Engine)

  • 이기형;류재덕;이창식
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.10-16
    • /
    • 2004
  • The Homogeneous Charge Compression Ignition (HCCI) engine has advantage for reducing the NOx and P.M. simultaneously. Therefore, HCCI engine is receiving attention as a low emission diesel engine concept. This study was carried out to investigate the characteristics of combustion and exhaust emission for operating conditions in a direct injection type of HCCI engines such as supercharged and naturally aspirated using diesel fuel and additive. From the experimental result, we found that cool flame was always appeared and also it was difficult to control combustion characteristics by changing the injection timing in HCCI. In addition, at the lean air-fuel ratio and high speed range, it was observed that charging air pressure, additive or increasing intake air temperature is effective to increase combustion performance and reduce exhaust emission. We concluded that chemical reaction by the increasing intake air temperature or additive without physical improvement has limitation for reduction of exhaust emission.

균질혼합압축점화기관의 배출가스특성에 관한 연구 (A Study on the Emissions of Homogeneous Charge Compression Ignition Engine)

  • 한성빈;최경호
    • 대한기계학회논문집B
    • /
    • 제28권3호
    • /
    • pp.324-329
    • /
    • 2004
  • As a new concept in engines and a power source for future automotive applications, the HCCI(Homogeneous Charge Compression Ignition) engine has been introduced. Essentially a combination of spark ignition and compression ignition engines, the HCCI engine exhibits low NO$_x$ and PM emissions as well as high efficiency under part load. In this research, a 4 cylinder diesel engine was converted into a HCCI engine, and propane was used as the fuel. The main parameters for this research are fuel flow rate and the temperature of the intake manifold, and the effects of such on a HCCI engine's performance and exhaust was investigated.

흡입밸브 각이 실린더 내 와류 발생 특성에 미치는 영향(II) (Effect of Inlet Valve Angle on In-Cylinder Swirl. Generation Characteristics(II))

  • 엄인용;박찬준
    • 한국자동차공학회논문집
    • /
    • 제17권2호
    • /
    • pp.42-48
    • /
    • 2009
  • This paper is the second of 2 companion papers which investigate in-cylinder swirl generation characteristics according to inlet valve angle. Two DOHC 4 valve engines, one has wide intake valve angle and the other has narrow valve angle, were used to compare the characteristics of swirl motion generation in the cylinder. One intake port was deactivated to induce swirl flow. A PIV (Particle Image Velocimetry) was applied to measure in-cylinder velocity field according to inlet valve angle during intake stroke. The results show that the flow patterns of narrow valve engine are much more stable and well arranged compared with the normal engine over the entire intake and compression stroke except early intake stage, and very strong swirl motion is generated at the end of compression stage in this engine nevertheless using straight port which is unfavorable for swirl generating. In the wide valve angle one, however, strong swirl motion induced during intake stroke is destroyed as the compression progresses.

LPG-DME 압축착화 엔진에서 흡기 가변밸브 영향 (LPG-DME Compression Ignition Engine with Intake Variable Valve Timing)

  • 염기태;배충식
    • 한국자동차공학회논문집
    • /
    • 제16권2호
    • /
    • pp.158-165
    • /
    • 2008
  • The combustion and exhaust emissions characteristics of a liquefied petroleum gas-di-methyl ether compression ignition engine with a variable valve timing device were investigated under various liquefied petroleum gas injection timing conditions. Liquefied petroleum gas was used as the main fuel and was injected directly into the combustion chamber. Di-methyl ether was used as an ignition promoter and was injected into the intake port. Different liquefied petroleum gas injection timings were tested to verify the effects of the mixture homogeneity on the combustion and exhaust emission characteristics of the liquefied petroleum gas-di-methyl ether compression ignition engine. The average charge temperature was calculated to analyze the emission formation. The ringing intensity was used for analysis of knock characteristics. The combustion and exhaust emission characteristics differed significantly depending on the liquefied petroleum gas injection and intake valve open timings. The CO emission increased as the intake valve open and liquefied petroleum gas injection timings were retarded. However, the particulate matter emission decreased and the nitrogen oxide emission increased as the intake valve open timing was retarded in the diffusion combustion regime. Finally, the combustion efficiency decreased as the intake valve open and liquefied petroleum gas injection timings were retarded.

가솔린 직분사식 불꽃점화기관에서 연료 분사 방향이 혼합기 형성에 미치는 영향에 관한 수치적 연구 (Numerical Study on the Effect of Injection Direction on Mixture Formation Characteristics in DISI Gasoline Engine)

  • 김태훈;박성욱
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.101-102
    • /
    • 2014
  • Rising oil price and environmental problems are causing automotive industry to increase fuel efficiency. Improved fuel efficiency in gasoline engine was made possible by development of DISI gasoline engine. Since fuel is injected inside cylinder directly, in-cylinder temperature can be reduced than multi-port injection engine and this leads to increased compression ratio. However, engine performance is largely dependent on mixture formation process due to in-cylinder fuel injection. Especially for spray guided and air guided DISI gasoline engine, injection direction is important factor to mixture preparation. It is because interaction between intake flow and spray affect fuel-air mixture. Hence, in this study, mixture formation characteristics were analyzed by varying injection direction using KIVA 3V release2 code. Residual gas was considered for assuming combustion. Therefore, initial condition for in-cylinder temperature was set equal to the end state of exhaust stroke of combustion cycle. Since angle between intake air flow direction and spray direction affects fluid flow and evaporation field, mixture distribution was affected by fuel injection direction dominantly.

  • PDF

흡입 스월유동이 Sl기관의 희박연소에 미치는 영향 (The Effects of Intake Swirl Flow en Lean Combustion in an Sl Engine)

  • 정구섭;전충환;장영준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권6호
    • /
    • pp.1298-1307
    • /
    • 2001
  • Recently, the efforts to improve fuel economy and to reduce pollutant emission have become the main subject in the development of a gasoline engine. A lean combustion engine admitted as the best alternative is relatively lower fuel consumption rate and exhaust emissions. In this study, it is focused on intensifying intake flow field as one of methods to improve the performance of the lean combustion. First, three different types of suitable swirl control valve(SC7) with high swirl and tumble ratio are selected through steady flow experiment, being installed in a spark ignition engine. The relationship between lean misfire limit and torque was investigated with injection timing and spark ignition timing. Also, the effect of intensified swirl new on the combustion Stability and exhaust emissions was experimently examined by the measuring in-cylinder pressure and combustion variation. The results show that the engine with swirl control calve is superior to other conventional engine on the lean misfire limit, specific torque, combustion variation and emission, and the appropriate injection timing and spark ignition timing exist according to the type of swirl control valve.

  • PDF

흡입포트형상에 따른 모터링엔진내 압축과정 난류특성 연구 (The Effect of Intake Port Configurations on the Turbulence Characteristics During Compression Stroke in a Motored Engine)

  • 강건용;이진욱;정석용;백제현
    • 대한기계학회논문집
    • /
    • 제18권4호
    • /
    • pp.920-932
    • /
    • 1994
  • The combustion phenomena of a reciprocating engine is one of the most important processes affecting performance and emissions. One effective way to improve the engine combustion is to control the motion of the charge inside a cylinder by means of optimum induction system design, because the flame speed is mainly determined by the turbulence at compression(TDC) process in S.I. engine. It is believed that the tumble and swirl motion generated during intake breaks down into small-scale turbulence in the compression stroke of the cycle. However, the exact nature of their relationship is not well known. This paper describes cycle resolved LDV measurement of turbulent flow inside the cylinder of a 4-valve engine under motoring(non-firing) conditions, and studies the effect of intake port configurations on the turbulence characteristics using following parameters ; Eulerian temporal autocorrelation coefficient, turbulence energy spectral density function, Taylor micro time scale, integral time scale, and integral length scale.

The Experimental Investigations of Recirculated Exhaust Gas on Exhaust Emissions in a Diesel Engine

  • 김형남;배명완;박재윤
    • Journal of Mechanical Science and Technology
    • /
    • 제15권11호
    • /
    • pp.1588-1598
    • /
    • 2001
  • The effects of recirculated exhaust gas on the characteristics of NOx and soot emissions under a wide range of engine loads were experimentally investigated by using a four-cycle, four-cylinder, sw irl chamber type, water-cooled diesel engine operating at three engine speeds. The purpose of this study was to develop the EGR-control system for reducing NOx and soot emissions simultaneously in diesel engines. The EGR system is used to reduce NOx emissions, and a novel diesel soot removal device with a cylinder-type scrubber for the experiment system was specially designed and manufactured to reduce soot contents in the recirculated exhaust gas to the intake system of the engine. The experiments were performed at the fixed fuel injection timing of 4$^{\circ}$ ATDC regardless of experimental conditions. It was found that soot emissions in exhaust gases were reduced by 20 to 70% when the scrubber was applied in the range of the experimental conditions, and that NOx emissions decreased markedly, especially at higher loads, while soot emissions increased owing to the decrease in intake and exhaust oxygen concentrations, and the increase in equivalence ratio as the EGR rate is elevated.

  • PDF

대형 디젤 엔진의 연비 향상을 위한 Miller Cam 평가 (Evaluation on a Miller Cam for Improving the Fuel Consumption of a Large Diesel Engine)

  • 송창훈;왕태중;임희준
    • 한국자동차공학회논문집
    • /
    • 제24권1호
    • /
    • pp.47-52
    • /
    • 2016
  • Miller timing is one of the promising ways which can improve the fuel consumption of internal combustion engines. Indeed, Miller timing employing an early intake valve close is widely applied to large diesel and gas engines to enhance performance and reduce NOx emissions. In this study, performance evaluation is carried out by 1-D cycle simulation in order to estimate the effect of Miller CAM timing before BDC for a 32 L turbocharged diesel engine. To optimize Miller CAM timing, a single stage turbocharger is matched with an early intake valve close since boost pressure is a significant parameter that can control compression work in a turbocharged engine. The engine simulation result shows that there is enough potential to improve fuel consumption rate and also reduce NOx emissions at the same time.Abstract here.

흡기 선회유동 및 연소인자가 V8형 TCI 디젤엔진의 성능 및 배출가스특성에 미치는 영향 (Effects of Intake Swirl and Combustion Parameters on the Performance and Emission in a V8 Type Turbocharged Intercooler Diesel Engine)

  • 윤준규;차경옥
    • 한국자동차공학회논문집
    • /
    • 제13권4호
    • /
    • pp.135-144
    • /
    • 2005
  • The Effects of intake swirl and combustion parameters on the performance and emission characteristics in a V8 type turbocharged intercooler D.I. diesel engine of the displacement $16.7\iota$ were studied experimentally in this paper. Generally the swirl in the combustion process of diesel engine promotes mixing of the injection fuel and the intake air. Also, TCI diesel engine is put to practically use intercooler in order to increase boost efficiency which is cooled boost air. As a result of steady flow test, when the swirl ratio is increased, the mean flow coefficient is decreased, whereas the Gulf factor is increased. And through engine test, its can be effected to meet performance and emission by optimizing the main parameters; the swirl ratio is 2.25, compression ratio is 17.5, combustion bowl is re-entrant $8.5^{\circ}$, nozzle hole diameter is $\phi0.33^{\ast}3+\phi0.35^{\ast}2$, injection timing is BTDC $12^{\circ}CA$ and turbocharger is T02 model which are compressor 0.6A/R+46trim and turbine 1.0A/R+57trim.