• Title/Summary/Keyword: Engine Cycle Simulation

Search Result 155, Processing Time 0.04 seconds

Optimization of valve events in a 4 cycle reciprocating engine using measured intake and exhaust port pressures (4사이클 왕복동식 엔진에 있어서 흡배기 변동압 측정치를 이용한 흡기효율 최적화 컴퓨터 시뮬레이션)

  • 오세종;진영욱;정재화
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.500-507
    • /
    • 1989
  • The improvement of volumetric efficiency of air charging into combustion chamber is a primary requirement to obtain better mean effective pressure of an engine. Since parameters such as the air resistances in intake and exhaust flow passages, valve lift and valve timing influence greatly to the volumetric efficiency, it is very convenient and time saving if we can optimize these parameters by computation before we enter into long time fact finding engine tests. In this study we have developed a semi-empirical engine simulation program for the determinations of intake and exhaust valve timings, valve lifts, intake and exhaust port diameters in order to obtain highest volumetric efficiency. In this computation it requires only the measured variational pressures in intake and exhaust port. Using these variational pressures as an input data for our simulation program, we can calculate volumetric efficiency more accurately and can save computing time drastically. To confirm the validity of our simulation program we have made engine operation test in parallel and taken the experimental data. Comparing the computation result with the experimental data obtained through real engine test it has shown only the difference of 3%.

Development of a Simulation Program for the Performance of Turbo-Charged Diesel Engines (과급디젤기관의 성능시뮤레이션 프로그램개발)

  • 최재성;박태인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.97-103
    • /
    • 1994
  • This paper describes briefly the simulation program for predicting the performance of a high speed turbocharged four cycle diesel engine. The wave phenomena in the intake and exhaust systems are calculated by the characteristic method. The combustion process in the power cycle is represented by the heat release pattern which is given by the Wiebe's function or the pattern based on measured values. Turbocharger matching for the engine is described by utilizing the characteristic maps of both the compressor and turbine, which are obtained from quasi-steady states. A comparison of experimental and calculated results shows a good agreement. Then the influences of the intake system, the period of valve overlap and the characteristics of the turbine are numerically investigated by the simulation.

  • PDF

Performance of a Single-Cylinder 4-Stroke C.I. Engine Obtained from Cycle Simulation (단기통 4사이클 압축점화기관의 시뮬레이션에 의한 성능해석)

  • 이태원;유병철
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.7 no.3
    • /
    • pp.74-82
    • /
    • 1985
  • Using single-zone heat release model and quasi-steady model, computer program for calculating the compression ignition engine cycle was composed. The properties in the cylinder were calculated in terms of crank angle and the effects of various operating conditions on rate of heat release and on engine performance were studied. The predicted values for the engine under consideration have shown good agreement with published data.

  • PDF

Study on the Simulation of the 4-Stroke Cycle Spark Ignition Engines(Second Paper) (4 행정 사이클 스파크 점화기관의 시뮬레이션에 관한 연구)

  • 윤건식;윤영환;우석근;신승한;서문진
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.246-259
    • /
    • 2003
  • For predicting the performances of the four stroke cycle spark ignition engines. the gas behavior in the engine system has been analyzed. The calculations consist of two parts. the calculation of the gas behavior in the intake and exhaust systems which was described in the first paper, and the calculation of the variations of gas properties inside the engine cylinders. In this Paper the simulations for the in-cylinder processes were described for the MPI engine, naturally aspirated and turbocharged engines with a carburettor. With the combination of the calculations of the intake and exhaust systems and the calculation of the in-cylinder processes. the predictions of the engine Performances and the exhaust emission characteristics were carried out. And the result showed good agrements with the experimental results under wide range of operating conditions.

Phenomenological Combustion Modeling of a Direct Injection Diesel Engine with In-Cylinder Flow Effects

  • Im, Yong-H.;Huh, Kang-Y.
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.569-581
    • /
    • 2000
  • A cycle simulation program is developed and its predictions are compared with the test bed measurements of a direct injection (DI) diesel engine. It is based on the mass and energy conservation equations with phenomenological models for diesel combustion. Two modeling approaches for combustion have been tested; a multi-zone model by Hiroyasu et al (1976) and the other one coupled with an in-cylinder flow model. The results of the two combustion models are compared with the measured imep, pressure trace and NOx and soot emissions over a range of the engine loads and speeds. A parametric study is performed for the fuel injection timing and pressure, the swirl ratio, and the squish area. The calculation results agree with the measured data, and with intuitive understanding of the general operating characteristics of a DI diesel engine.

  • PDF

Engine Cycle Simulation for the Effects of EGR on Combustion and Emissions in a DI Diesel Engine (직분식 디젤엔진에서 EGR이 연소특성 및 배출가스에 미치는 영향에 대한 시뮬레이션 연구)

  • 함윤영;전광민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.51-59
    • /
    • 2002
  • In this study, cycle simulation was performed to investigate the effect of EGR on combustion characteristics and emissions including NO and soot using a two-zone model in a DI diesel engine. The NO formation was well predicted for different EGR rate and temperature using a two-zone model. The oxygen in the inlet charge was replaced by CO$_2$ and H$_2$O with EGR. The reduction in the inlet charge oxygen resulted in very large reduction in NO level at the same inlet charge temperature. The effect of EGR was to reduce the burned gas temperature. When EGR was increased from 0% to 15%, the peak flame temperature was decreased by 50$\^{C}$ and it caused about 57% NO reduction. EGR caused increase of the overall inlet charge temperature which offset some of benefit of lower flame temperature resulting from O$_2$ displacement. Cooling the EGR was confirmed to provide additional benefits by lowering NO emission. It also reduced soot emission.

Comparative Analysis of Maximum Driving Range of Electric Vehicle and Internal Combustion Engine Vehicle (전기자동차 및 내연기관 자동차의 최대 주행 거리 비교 분석)

  • Kim, Jeongmin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.105-112
    • /
    • 2013
  • In this paper, EV (Electric Vehicle) and ICE (Internal Combustion Engine) vehicle simulators are developed to compare maximum driving range of EV and ICE vehicle according to different driving patterns. And, simulations are performed for fourteen constant velocity cases (20, 30, 40, ${\ldots}$, 150 km/h) and four different driving cycles. From the simulation results of constant velocity, it is found that the decreasing rate of maximum driving range for EV is larger than the one for ICE as both the vehicle velocity and the driving power increase. It is because the battery efficiency of EV decreases as both the velocity and the driving power increase, whereas the engine and transmission efficiencies of ICE vehicle increase. From the results of four driving cycle simulation, the maximum driving range of EV is shown to decrease by 50% if the average driving power of driving cycle increases from 10 to 20kW. It is because the battery efficiency decreases as the driving power increases. In contrast, the maximum driving range of ICE vehicle also increases as the average driving power of driving cycle increases. It is because the engine and transmission efficiencies also increase as the driving power increases.

Development of a New Concept Rotary Engine (II) - Performance Analysis of Real Cycle - (신개념 로터리 엔진의 개발(II) - 실제 사이클의 성능 분석 -)

  • 오문근;박원엽;이승규
    • Journal of Biosystems Engineering
    • /
    • v.28 no.4
    • /
    • pp.285-294
    • /
    • 2003
  • This study was carried out to propose a new-concept internal combustion engine which has great potential advantages to the conventional engines. Proposed new-concept engine is a kind of rotary engine. A rotor is rotating concentrically in a cylinder which is divided into two partitioning valves, and it makes four compartments in the cylinder. The volumes of each of four compartments are changing continuously with the rotor movement and performs the functions of intake, compression. expansion and exhaust simultaneously. Expected thermal efficiency for the real cycle is 26 percent at conditions of 1,000 rpm and compression ratio of 8.0, which is 3 to 4 percent higher than that of the conventional engines such as the piston engine, gas turbine and Wankel rotary engine. A simulation procedure proved that the new concept engine is functional, and has many potential advantages compared to the existing conventional engines.

A study on the heat transfer of the turbocharged gasoline engine (터보과급 가솔린기관의 열전달에 관한 연구)

  • 최영돈;홍진관
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.69-82
    • /
    • 1988
  • Heat transfer experiment is carried out during the performance test of the 4-cylinder 4-stroke cycle turbo-charged gasoline engine. Cycle simulation employing the measured pressure in cylinder, the cooling water temperature and flow rate and others is carried out in order to calculate the gas temperature in cylinder. In this simulation combustion process was simulated by Annand's two zone model and suction, compression, and other processes are calculated completely. From this simulation, we can obtain not only the heat transfer coefficient but also the flame speed, turbulent burning velocity, flame factor and the boiling condition of cooling passage. The results are investigated with engine speed, equivalence ratio and spark advance.

  • PDF

MODELING OF DIRECT INJECTION DIESEL ENGINE EMISSIONS FOR A QUASI-DIMENSIONAL MULTI-ZONE SPRAY MODEL

  • Jung, D.;Assanis, D.N.
    • International Journal of Automotive Technology
    • /
    • v.5 no.3
    • /
    • pp.165-172
    • /
    • 2004
  • Phenomenological models for direct injection diesel engine emissions including NO, soot, and HC were implemented into a full engine cycle simulation and validated with experimental data obtained from representative heavy-duty DI diesel engines. The cycle simulation developed earlier by Jung and Assanis (2001) features a quasi-dimensional, multi-zone, spray combustion model to account for transient spray evolution, fuel-air mixing, ignition and combustion. In this study, additional models for HC emissions were newly implemented and the models for NO, soot, and HC emissions were validated against experimental data. It is shown that the models can predict the emissions with reasonable accuracy. However, additional effort may be required to enhance the fidelity of models across a wide range of operating conditions and engine types.