• Title/Summary/Keyword: Engine Cooling System

Search Result 314, Processing Time 0.032 seconds

Cooling Design and Flight Test for Airplane Reciprocating Engine (항공기 왕복엔진 냉각설계 및 인증시험)

  • Lee, Kangyi;Park, Jonghyuk;Park, Sunghwan
    • Journal of Aerospace System Engineering
    • /
    • v.6 no.2
    • /
    • pp.35-41
    • /
    • 2012
  • A reciprocating engine installed on a normal category airplane shall be effectively cooled by air flown through the engine compartment. A airplane powerplant designer has to design cooling air inlets, baffles, seals, and outlets to maintain cylinder head temperatures and oil temperature under the limits, and show compliance with appropriate airworthiness standard. In this study, cooling designs of the installed engine and compliance requirements applicable to the cooling designs were reviewed, and engine cooling flight test results were evaluated for design changes. Engine cooling certification test will be conducted in a next step.

A Study for Development of a Marine Diesel Engine from a 500Ps Commercial Vehicle Diesel Engine (500Ps급 상용차량 디젤엔진을 이용한 선박용 디젤엔진 개발 연구)

  • Sim, Han-Sub
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.125-131
    • /
    • 2013
  • This study was carried out to develop a diesel engine for marine propulsion. This marine diesel engine was developed based on a 500Ps vehicle diesel engine. Many main parts, such as the intercooler, radiator, and engine controller were designed for the marine diesel engine. The intercooler was designed to be of sea water cooling type; inlet air is cooled by sea water. Engine coolant is cooled by sea water in the radiator too. The water cooling heat exchanger has high cooling performance. In the cooling system, consists of the intercooler and the radiator, the sea water passes through the intercooler and then the radiator, in sequence. This process is very effective compared to the reverse method in which sea water passes through the radiator and then the intercooler, in sequence. The control performance of the engine controller and the fuel injection rate were improved using an engine speed controller. This system was tested on an engine dynamometer and an exhaust gas analyzer using the marine diesel engine test method. Test results show that the 500Ps marine diesel engine satisfied the IMO NOx regulations; Tier II.

A Design for Water Cooling of a Marine Diesel Engine with Verification of Improvement (선박용 수냉식 디젤엔진의 개발 및 성능평가)

  • Sim, Hansub;Jun, Jongoh
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.6
    • /
    • pp.58-63
    • /
    • 2016
  • This paper presents a study of heat dissipation away from the fuel combustion of a marine diesel engine. These engines are operated for long periods under high load conditions: so cooling systems are necessary for radiation and control of the high temperature levels. In the study, each component of the water cooling system was developed to achieve improvements in cooling and safety. Heat transfer considerations and arrangement design for the components were important and an intercooler and exhaust manifold incorporated. An optimization of the cooling water's flow path was achieved subject to the need for convenient maintenance. The 750Ps marine diesel engine was used for performance testing of the cooling system. The test results showed adequate cooling performance improvement.

A Study on Improvement of Engine Cooling System (엔진 냉각 시스템 개선에 관한 연구)

  • Kim, M.H.;Oh, B.W.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.2
    • /
    • pp.103-116
    • /
    • 1994
  • In this study the behavior of engine cooling loss and overall heat transfer coefficient were studied experimentally using naturally aspirated engine and turbo charged engine. Using turbo charging, heat dissipation was increased because of the density of the mixture was increased with increment of inlet air flow rate. Therefore, cooling loss of turbo charged engine is larger than naturally aspirated engine. As taking the measurement of surface temperature of combustion chamber, gas heat transfer coefficient was calculated and found that it has greatly affected to overall heat transfer coefficient. The empirical formula of overall heat transfer coefficient established in order to predict of engine cooling loss and express only as a function of mean piston velocity.

  • PDF

A STUDY ON THE IMPROVEMENT OF FUEL ECONOMY BY OPTIMIZING AN ELECTRIC ENGINE COOLING SYSTEM (전자제어식 냉각시스템이 연비에 미치는 영향에 관한 연구)

  • In, Byung-Deok;Lee, Ki-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3001-3006
    • /
    • 2008
  • Recently, the internal combustion engines have focused on reducing both the CO2 emissions in order to cope with severe regulations for greenhouse effect. Therefore, various new technologies have been developed in many countries. Among them, the cooling system is spotlighted because it has great effect on fuel efficiency. However, the present engine cooling system is almost same as one of the 50 years ago. The needs for high performance and compact size make it important to improve engine cooling system, down-sizing and control method of coolant flow. Thus, low fuel consumption technology such as control and synthetic management of cooling system was necessary to satisfy with these needs. In this study, we applied electric thermostat to improve the fuel economy. The fuel consumption was compared after driving FTP-75 mode on both conditions which were with a conventional wax thermostat and with a electric thermostat. The coolant temperature of opening the electric thermostat is higher.

  • PDF

Flow Characteristics of Oil Jet for Cooling a Piston (피스톤 냉각용 엔진오일 제트 유동특성)

  • Li, L.;Lee, J.H.;Jung, H.Y.;Kim, J.H.;Lee, Y.W.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.50-55
    • /
    • 2006
  • An efficient cooling system for a piston of an automotive engine is very important. Therefore a large capacity gasoline engine or diesel engine has adopted the direct injection cooling system to increase its cooling efficiency. In this direct cooling system, an cooling oil is injected to a piston directly using an oil jet and this cooling oil flows through an oil gallery inside the piston. Flow rate and injection accuracy of this cooling oil are very important because these are main factors that have influence on its efficiency. The purpose of this study is to understand the changes of flow characteristics with various curvatures and diameters of an outlet nozzle and to check whether engine oil enters into the oil gallery well or not. From this study, we found that secondary flow was formed in a curved part of jet due to centrifugal force and irregular flow pattern appeared at the jet outlet. This pattern has influence on flow characteristics of engine oil entering the gallery. These simulation results have a good agreement with experiments.

  • PDF

Engine room cooling system using jet pump (제트 펌프를 이용한 엔진 룸 냉각 시스템)

  • Lim, Jeong-Woo;Lee, Sang-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.162-167
    • /
    • 2000
  • Construction machinery includes an engine enclosure separated from a cooling system enclosure by a wall to reduce noise and advance cooling system performance. For this structure, however, the axial fan cannot be of benefit to the engine room, and so the temperature rise in the engine room makes several bad conditions. This paper proposes that hot air in engine room is evacuated tv secondary pipe using jet pump. This paper demonstrates the structure and the effect of jet pump and useful guideline on design of area, length, and shape of secondary pipe to maximize the effect of jet pump.

  • PDF

NUMERICAL STUDY FOR COOLING CAPACITY IMPROVEMENT OF ENGINE ROOM ENCLOSURE SYSTEM (엔진실 차폐 시스템의 냉각성능 개선을 위한 수치적 연구)

  • Bae, Y.S.;Yoo, G.J.;Choi, H.K.
    • Journal of computational fluids engineering
    • /
    • v.14 no.2
    • /
    • pp.39-45
    • /
    • 2009
  • In engine room, proper enclosure system is preferable for reducing noise level but the enclosure system in the engine room causes bad influence on cooling performance due to poor ventilation. Cooling efficiency of the enclosure system can be improved by varying fan speed and proper flow path for ventilation. In this study, numerical analysis is performed to assess cooling effect of the enclosure system using finite volume method. The RNG k-$\varepsilon$ model is adopted for turbulence model along with heat exchanger model and porous media model for heat exchanger analysis, and moving reference frame model for rotational fan. Verification result shows reasonable agreement with experimental data. Analysis results show direct effect of velocity and temperature distribution on cooling ability in the enclosure system. Enclosure system of case B shows high heat transfer coefficient and has the smallest area ratio of opened flow passages which is good for noise level reduction.

Vehicle Fuel Economy Improvement by Studies on the Engine Cooling and Ancilliaries System of the Heavy Duty Engine (차량 연비 향상을 위한 대형 디젤엔진 차량의 엔진 냉각 및 부대장치 연구)

  • Lyu, Myung-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.79-84
    • /
    • 2007
  • Recently it is strongly required to develop the better fuel economy as well as basic power performance based on strict emission legislation. This paper focuses on studies of the engine cooling and ancillaries system among fuel economy factors in the developing stage. Firstly through the analysis of the current specifications, it is assessed whether each components may be designed properly, not overdesigned. Secondly, it is predicted how the fuel economy of each components can be improved. Finally the results are confirmed by vehicle field test equppted with the updatedcomponents. This study found good agreementbetween the prediction and the field test on the vehicle fuel economy improvements of the heavy duty engine vehicle with updated components such as engine cooling and ancilliaries.

A Study on the Design of the Vehicle Cooling System (자동차 엔진의 냉각계통 설계에 관한 연구)

  • 박찬국;이종범;정우인
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.7-16
    • /
    • 1999
  • To maintain thereasonable temperature in the engines is very important to keep the steady combustion state of engine and to prevent increasing of oil consumption , deteriorating of lubricant, shortening of the life time of engine and decreasing of material strength. The method of energy balance for divided elements of radiator and engine-oil cooler is considered to analyse the performance of radiator and engine-oil cooler. The data obtained by engine test and vehicle cooling tunnel test are applied to program for calculation of radiator outlet temperature. As a result, data obtained by numerical analysis agree well with those by experiments. And thus, it is concluded that this simulation program is available in developing the cooling system for a new car.

  • PDF