• Title/Summary/Keyword: Engine Control

Search Result 2,127, Processing Time 0.029 seconds

Turbojet Engine Control Using Artificial Neural Network PID Controller With High Gain Observer (고이득 관측기가 적용된 터보제트엔진의 인공신경망 PID 제어기 설계)

  • Kim, Dae-Gi;Jie, Min-Seok
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • In this paper, controller propose to prevent compressor surge and improve the transient response of the fuel flow control system of turbojet engine. Turbojet engine controller is designed by applying Artificial Neural Network PID control algorithm and make an inference by applying Levenberg-Marquartdt Error Back Propagation Algorithm. Artificial Neural Network inference results are used as the fuel flow control inputs to prevent compressor surge and flame-out for turbojet engine for UAV. High Gain Observer is used to estimate to compressor rotation speed of turbojet engine. Using MATLAB to perform computer simulations verified the performance of the proposed controller. Response characteristics pursuant to the gain were analyzed by simulation.

Design of Controllers for the Stable Idle Speed in the Internal Combustion Engine

  • Lee, Young-Choon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.4
    • /
    • pp.54-60
    • /
    • 2001
  • This paper deals with control design method having anticipation delay which is proposed for the discrete nonlinear engine where system dynamics is not accurate. Due to the induction-to-power delay in internal combustion(IC) engine having abrupt torque loss, underdamping and chattering in engine idle speed becomes a serious problem and it could make drivers uncomfortable. For this reason, Three types of the closed-loop controller are developed for the stable engine idle speed control. The inputs of the controllers are an engine idle speed and air conditioning signal. The output of the controllers is an duty cycle to operate the idle speed control valve(ISCV). The proposed controllers will be useful for improving actual vehicles since these shows good test

  • PDF

Performance optimization control of supersonic variable cycle engines

  • Tagashira, Takeshi;Sugiyama, Nanahisa
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.779-783
    • /
    • 2004
  • First this paper introduces an advanced FADEC (Full Authority Digital Electric Control) for current and future jet engines.It is designed to realize not only stable thrust control, but also performance improvement, reliability enhancement, service life extension, etc. It can be built by using current micro-processor with high computational power and there exists no difficulties but reliability problem of the micro- processor. Next, the simulation results of SFC minimization control are shown. The target engine is a supersonic, low-bypass ratio, 2-spool, combined cycle turbofan, designated as HYPR90T, which consists of a turbo engine for under Mach 3 flight and a ram engine for over Mach 3 flight. he results can then be used for performance optimization of the engine, which plays important role in the advanced FADEC.

  • PDF

Development of Small-sized Gas Turbine Engine Control System for Power Generation (발전용 소형가스터빈엔진 제어시스템 개발)

  • Hong, Seong-Jin;Kim, Seung-Min;Yook, Sim-Kyun;Nam, Sam-Sik
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.4
    • /
    • pp.52-56
    • /
    • 2011
  • Small-sized gas turbine engine could be applied to various fields such as propulsion, power generation, machine driving, etc., and Doosan has been developing 5MW class gas turbine engine for power generation since 2005. To verify its design performance and operating characteristics, a gas turbine engine test facility was constructed, and control system was also established to satisfy rapid and reliable control performance. In this paper, the hardware specification and structure of control system for gas turbine engine are introduced, and test result for starting characteristics analysis and loading is also presented.

Development of Map-Based Engine Control Logic for DME Fuel (MAP 기반 DME용 엔진 제어로직 개발)

  • Park, Young-Kug;Chung, Jae-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3127-3134
    • /
    • 2013
  • This paper presents the verified results from the examination of the control algorithm, logic composition, and vehicle condition of the engine that has been adapted for DME fuel. It introduces the development process of the control structure and the logic control based on control map and auto-code generation, and finally verifies the reliability and performance of the overall control. The control structure largely consists of the injection control part that implements driver demand into an engine net torque and the air control system part that satisfies characteristics of exhaust gas and power performance. The control logic is designed with feedforward and feedback control for each of its control functions for an enhanced response. Moreover, the control map of the feedforward controller is created by the use of an engine model created by test data of mass product diesel engine, and it was subsequently calibrated in the test process of the engine and vehicle state. A test mode was completed by attaching the developed controller to the vehicle, and a reduction in gas emission is confirmed by the calibration of EGR, VGT, and injection times.

A Study on the Development of an Electronic Control Unit for a Gasoline Engine using Microcomputer (마이크로컴퓨터를 이용한 가솔린 기관용 전자제어장치의 개발에 관한 연구)

  • Kim, T.H.;Cho, J.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.224-237
    • /
    • 1995
  • An ECU(Electronic Control Unit) with 16 bit microcomputer has been developed. This system includes hardware and software for more precise control on fuel injection, ignition timing, and idle speed. This control system employs an air flow sensor of the hot wire type, a direct ignition system, an idle speed control system using a solenoid valve, and a crank angle sensor. Especially, the crank angle sensor provides two separate signals: One is the position signal(POS) which indicates 180 degree pulses per revolution, and the other is the reference signla(REF) that represents each cylinder individually. The conventional engine control system requires at least two engine revolutions in order to identify the cylinder number. However, the developed engine control system can recognize the cylinder number within a quarter of an engine revolution. Therfore, the developed engine control system has been able to control fuel injection and ignition timing more quickly and accurately, Furthermore, the number of misfire reduces during the cold start.

  • PDF

A STUDY ON THE SPEED CONTROL OF A LOW SPEED-LONG STROKE MARINE DIESEL ENGINE (저속 장행정 박용디젤기관의 속도제어에 관한 연구)

  • 유영호;하주식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.26-36
    • /
    • 1989
  • Recently digital governor system is commonly adapted for the speed control of the marine diesel engine because of too much fluctuation of rpm resulted by the low speed, long stroke, high efficiency and a small number of cylinder of it, and versatile studies on the development of digital governor system are progressed. On this subject the new control method in which the fuel is controlled by feedforwarding the change of load as well as the feedback of angular velocity in case of disregarding the engine dead time and influence of scavenging air was proposed by the authors, and found the method has shown quite a good control performance in comparision to the conventional control method by the simulation using a digital computer for various load change. In this paper the speed control system of a diesel engine is simulated in case of regarding the engine dead time by the proposed method, and also confirm a good control performance of it under even more realistically simulated environment.

  • PDF

Precise Air-Fuel Ratio Control on Transient Conditions with the PC-ECU in SI Engine (PC-ECU를 이용한 SI 기관의 비정상상태 정밀공연비 제어)

  • Yoon, S.H.
    • Journal of ILASS-Korea
    • /
    • v.5 no.3
    • /
    • pp.9-16
    • /
    • 2000
  • In a SI engine, three-way catalyst converter has the best efficiency when A/F ratio is near the stoichiometry. The feedback control using oxygen sensors in the commercial engine has limits caused by the system delays. So it is necessary to control fuel quantity in accordance with intake air amount in order to reduce exhaust emission and improve the specific fuel consumption. Precise A/F ratio control requires measurement of air amount with respect to the cylinder and injection fuel according to the air amount In this paper, we applied nonlinear fuel injection model and developed the algorithm of A/F ratio control. This algorithm includes the methods of measurement of transient air mass flowing into each cylinder, of calculation of injection pulse width for measured air mass, and the method of feedback and engine control by using lambda sensor. Also we developed control program for IBM-PC by using C++ Builder, and tested it in the commercial engine.

  • PDF

A Study on the Speed Control of Medium Diesel Engine using a Fuzzy-PI Controller (퍼지 PI제어기를 이용한 중속 디젤 기관의 속도제어에 관한 연구)

  • 김영일;천행춘;서인호;유영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.435-440
    • /
    • 2000
  • The speed control system of diesel engine is considerably nonlinear. Therefore, a countermeasure such as gain scheduling used to be incorporated to compensate this nonlinearity. On the other hand, it is said that fuzzy control is very robust against nonlinearity. But it is difficult to get a satisfactory response with only fuzzy control in real system. In this paper authors design a fuzzy-PI controller for the speed control of Medium diesel engine and carry out experiments with dedicate system implemented by Intel 80916KC to real diesel engine, Deawoo MAN 6Cyl., 1800rpm driving 3$\psi$220V, 150KW generator. We confirm the effectiveness of proposed control system.

  • PDF

The Development of the Ignition Spark Timing Conversion System for LPG/Gasoline Bi-fuel Vehicle (LPG 및 Gasoline 겸용 차량의 엔진 점화시기 변환 제어시스템 개발)

  • 전봉준;양인권;김재국;김성준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.117-123
    • /
    • 2003
  • In a bi-fuel engine using gasoline and LPG fuel, with the current ignition timing for gasoline being used, the effective performance could not be taken in LPG fuel supply mode. The ignition timing in LPG fuel mode must be advanced much more than that of gasoline mode for the compensation of its lower flame speed, due to engine torque drop. This study aims to develop the control system for ignition spark timing conversion which is composed of hardwares and control algorithm for gasoline/LPG engine. We propose the control system which can advance the ignition spark timing in LPG fuel mode more than used in gasoline fuel mode. The advance of ignition timing is achieved by change of the ignition dwell time of coil igniter. The engine torque and F/E(Fuel-Economy) in LPG fuel mode are measured to evaluate the difference of engine performance between before and alter changing ignition spark timings. The engine torque and F/E are increased respectively, which proves the developed control system is effective so much for gasoline and LPG bi-fuel engine.