• Title/Summary/Keyword: Engine Assemble

Search Result 4, Processing Time 0.015 seconds

The Study about the Performance-Analysis of a Automotive Engine Cooling System (엔진 냉각시스템 성능해석에 관한 연구)

  • Shin, Chang-Hoon;Lee, Seung-Hee;Park, Warn-Gyu;Jang, Gi-Lyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.39-48
    • /
    • 2006
  • An engine cooling system affects overall performances of an engine which has been recently requested higher power in more confined engine room. The design of efficient cooling system demands a great effort to effectively correlate with each components, such as water jacket, radiator, coolant pump, cooling fan, etc. Thus, the aim of this study is to provide the design tool of the cooling system in the early design stage by enabling for the designer to accurately predict the engine cooling performances. This user-friendly design tool has various ways to assemble each components and control the running condition with related database. The present design tool was simulated and compared with experimental data. As a result, the inlet and outlet temperature of the radiator agree very well with experiments. It was concluded that the present design tool could be effectively used for the design of the engine cooling system.

Research on the Assembling Process of 7 tonf Class Small Liquid Rocket Engines (7 tonf 급 소형 액체로켓엔진 조립 체계 연구)

  • Moon, In Sang;Moon, Il Yoon;Jeong, Eun Hwan;Park, Soon Young
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.4
    • /
    • pp.48-53
    • /
    • 2017
  • Liquid rocket engines (LREs) are very complex systems that include combustion chambers, turbopumps, gas generators, ducts and tubes, valves and etc. Most components of the LREs require higher than or equal to level 6 IT (ISO Tolerance). The components along with pipe line and/or tubing must dispose not to interfere each other. In addition, effectiveness of maintenance and service after assembling should be considered when the allocation of the components are determined. Especially at the stage of the development, tolerance accumulations or unpredictable errors may result in misalignment and/or mismatches at interfaces of the parts. Namely, it is the engine assembling process that many inherent risks are realized and crises or incidents occur. Therefore, a rapid reaction system should be prepared. In this research, 7 tonf class liquid rocket assembling process was studied and actual building steps were introduced.

Performance Evaluation of Energy Saving in Core Router and Edge Router Architectures with LPI for Green OBS Networks (Green OBS 망에서 LPI를 이용하는 코어 및 에지 라우터 구조의 에너지 절감 성능 분석)

  • Yang, Won-Hyuk;Jeong, Jin-Hyo;Kim, Young-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.2B
    • /
    • pp.130-137
    • /
    • 2012
  • In this paper, we propose core and edge router architectures with LPI(Low Power Idle) for reducing energy consumption in OBS networks. The proposed core router architecture is comprised of a BCP switch, a burst switch, line cards and sleep/wake controller for LPI. When the offered load of network is low, sleep/wake controller can change the state of the core router line card from active to sleep state for saving the energy after receiving network control packet. The edge router consists of a switch for access line card, a SCU and OBS edge router line cards. The LPI function in edge router line card is performed through network level control by network control packet, individually. Additionally, PHY/transceiver modules can transition active state to sleep state when burst assemble engine generates new bursts. To evaluate the energy saving performance of proposed architecture with LPI, the power consumption of each router is analyzed by using data sheet of commercial router and optical device. And, simulation is also performed in terms of sleep time of PHY/Transceiver through OPNET.

The Construction Method for Virtual Drone System (가상 드론 시뮬레이터 구축을 위한 시스템 구성)

  • Lee, Taek Hee
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.6
    • /
    • pp.124-131
    • /
    • 2017
  • Recently, drone is extending its range of usability. For example, the delivery, agriculture, industry, and entertainment area take advantage of drone mobilities. To control real drones, it needs huge amount of drone control training steps. However, it is risky; falling down, missing, destroying. The virtual drone system can avoid such risks. We reason that what kinds of technologies are required for building the virtual drone system. First, it needs that the virtual drone authoring tool that can assemble drones with the physical restriction in the virtual environment. We suggest that the drone assembly method that can fulfill physical restrictions in the virtual environment. Next, we introduce the virtual drone simulator that can simulate the assembled drone moves physically right in the virtual environment. The simulator produces a high quality rendering results more than 60 frames per second. In addition, we develop the physics engine based on SILS(Software in the loop simulation) framework to perform more realistic drone movement. Last, we suggest the virtual drone controller that can interact with real drone controllers which are commonly used to control real drones. Our virtual drone system earns 7.64/10.0 user satisfaction points on human test: the test is done by one hundred persons.