• Title/Summary/Keyword: Engine Room

Search Result 359, Processing Time 0.026 seconds

Development of Combustion Model for Engine Control Algorithm Design (엔진제어 알고리즘 설계를 위한 연소모델 개발)

  • Park, Young-Kug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.26-36
    • /
    • 2010
  • This paper provides a description of the combustion model to obtain an accurate dynamic engine phenomena that satisfies real-time simulation for model-based engine control. The combustion chamber is modeled as a storage device for mass and energy. The combustion process is modeled in terms of a two-zone model for the burned and unburned gas fractions. The mass fraction burnt is modeled in terms of a Wiebe function. The instantaneous net engine torque is calculated from the engine speed and the instantaneous piston work. The modeling accuracy has been tested with a cylinder pressure data on a test bench and also the ability of real-time simulation has been checked. The results show that combustion model yields sufficiently good performance for the model-based control logic design. However the influence factors effected on model accuracy are some room for improvement.

An Analysis of Engine Cooling using a Three-dimensional Radiator Model (3차원 방열기 모델을 이용한 엔진냉각 해석)

  • 이영림
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.10-17
    • /
    • 2001
  • The performance of a radiator is generally determined using a wind tunnel, in which the air velocity is uniform. However, when it is installed in a car, the distribution of the air velocity becomes nonuniform due to front-end openings, cross members, and horns etc., resulting in lower performance. In this study, several underhood flow simulations have been first performed to get flow rates and velocity distributions over the radiator. Secondly heat release rates are calculated by both a performance curve and a radiator model. Finally, using an engine cooling system simulator, radiator-top-tank temperature is predicted and the variations of heat release rate and radiator-top-tank temperature with nonuniformity of air velocity distributions are analyzed. The results show that the current engine cooling model successfully accounts for the nonuniformity effects that should be considered for higher accuracy in predicting engine cooling performance.

  • PDF

A Study on the Evaluation of the Boarding Environment for the Ship Vibration (on the Basis of ISO-6954 : 2000(E)) (선박의 선내 진동에 의한 승선 환경 평가에 관한 연구 (ISO-6954 : 2000(E)의 평가방법에 기초))

  • Yu, Young-Hun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.4
    • /
    • pp.107-112
    • /
    • 2007
  • The vibration generated on shipboard is very important because it greatly affects on the comfortable mind of passenger and working conditions of crews. Shipboard vibration is closely concerned with the development of propulsion method and the type of main engine to decide speed of ship. To make the propulsion power, the main engine of ship have continuous explosion process in engine room, so the shipboard vibration is generated. The shipboard vibration causes the physiological and psychological damages to human body. In the case of the human body exposed to the shipboard vibration, the evaluation of human exposure to whole-body vibration is prescribed in ISO 6954 : 2000(E). In this paper, to evaluate the shipboard working environment, two kinds of vibration levels onboard ship were measured and compared with one another between engine rooms, engine control rooms and wheel house by the regulation of ISO 6954 : 2000(E).

  • PDF

An Evaluation of Working Environment of the Ship Vibration by ISO Regulation (ISO규정에 의한 선박의 선내진동과 승선근무 환경평가)

  • Yu, Young-Hun
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.11a
    • /
    • pp.139-144
    • /
    • 2007
  • The vibration generated on shipboard is very important because it is greatly affect on the comfortable mind of passenger and working conditions et crews. Shipboard vibration is closely concerned with the development of propulsion method tint is main engine to decide speed of ship. To make the propulsion power, the main engine of ship engine room have continuous explosion process, so the shipboard vibration is generated The physiological damage and psychological damage of human body have caused by the vibration et shipboard In the case of the human body is exposed to the shipboard vibration, the evaluation of human exposure to whole-body vibration is prescribed in ISO 6954: 2000(E). In this paper, to evaluate the shipboard working environment, the vibration levels of two kinds of ship onboard were measured and compared with engine rooms, engine control rooms and bridges by the regulation of ISO 6954: 2000(E)

  • PDF

Numerical Prediction of the Powering Performance of a Car-Ferry in Irregular Waves for Safe Return to Port(SRtP) (불규칙 파랑 중 카페리선의 SRtP 소요마력 수치 추정 연구)

  • Park, Il-Ryong;Kim, Je-in;Suh, Sung-Bu;Kim, Jin;Kim, Kwang-Soo;Kim, Yoo-Chul
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • This paper considers a numerical assessment of the self-propulsion performance of a damaged ferry carrying cars in irregular waves. Computational fluid dynamics(CFD) simulations were performed to see whether the ferry complied with the Safe Return to Port (SRtP) regulations of Lloyd's register, which require that damaged passenger ships should be able to return to port with a speed of 6 knots (3.09 m/s) in Beaufort 8 sea conditions. Two situations were considered for the damaged conditions, i.e., 1) the portside propeller was blocked but the engine room was not flooded and 2) the portside propeller was blocked and one engine room was flooded. The self-propulsion results for the car ferry in intact condition and in the damaged conditions were assessed as follows. First, we validated that the portside propeller was blocked in calm water based on the available experimental results provided by KRISO. The active thrust of starboard propeller with the portside propeller blocked was calculated in Beaufort 8 sea conditions, and the results were compared with the experimental results provided by MARIN, and there was reasonable agreement. The thrust provided by the propeller and the brake horsepower (BHP) with one engine room flooded were compared with the values when the engine room was not flooded. The numerical results were compared with the maximum thrust of the propeller and the maximum brake horse power of the engine to determine whether the damaged car ferry could attain a speed of 6 knots(3.09 m/s).

Hydraulic Constant Frequency Generation System Driven by Main Engine for Small Fishing Boat - Hydraulic Pump Control Type - (소형 어선용 주기구동 유압식 고주파수 발전장치에 관한 연구 ( 1 ) - 유압펌프 제어방식 -)

  • Lee, Il-Yeong;Park, Sang-Gil;Jeong, Yong-Gil
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.24 no.1
    • /
    • pp.30-35
    • /
    • 1988
  • An electrical power generation system driven by main engine shaft, briefly SG system for middle or small size fishing boat is studied experimently. In the SG system, power transmission is performed by a variable displacement hydraulic pump driven by the main engine and a constant displacement hydraulic motor. It was verified that the SG system enabled the generation of electrical power with constant frequency regardless main engine speed. In the SG system, setting reference frequency, sensing generator output frequency and setting controller parameters are performed by performed by programming in a microcomputer, so a countermeasure for physical situations of control object is very easy. Futhermore, the SG system has following features; low initial installation cost, wide freedom of installation in engine room, advantage of application in existing ships, especially fishing boat with hydraulic fishing equipments.

  • PDF

Changes in Circulatory and Respiratory Activities Observed on Men in an Engine Room of a Navy Ship (함정 기관실내 활동의 순환 및 호흡 기능에 대한 영향)

  • Hyun, Kwang-Chul;Nam, Kee-Yong
    • The Korean Journal of Physiology
    • /
    • v.1 no.2
    • /
    • pp.199-213
    • /
    • 1967
  • Circulatory and respiratory activities were observed in men exposed to the environment of engine room of a cruising Republic of Korea Navy ship and compared to the control values obtained in an ordinary laboratory room on land. The environment of an engine room of cruising navy ship was presumed to be a multiple stress acting on men. The environment of the engine room included high temperature $(35-42^{\circ}C)$, low relative humidity (20-38% saturation), vibration (about 7 cycles per second), rolling and pitching of ship and noises. Sixteen men were divided into two groups consisted of each 8 subjects. Subjects of sea duty group had experience of continuous on board duty averaging 3.5 years. Men of land duty group had no experience of on board activity. On land observations were made on one day prior to the boarding and leaving the port and four days after landing. In between observations in the engine room were made on the first, 5 th, 9 th, 12 th, and 14 th day of on board activity. The whole experimental period lasted for 20 days. Measurements on circulatory and respiratory parameters were at standing resting state (after 30 minutes standing in the case of on land study and 15 minutes in engine room study) and within one minute after cessation of on the spot running of which rhythm was 30/min. and lasted for 5 minutes. Oxygen consumption and pulmonary function test were done in the period of two minutes from the 3rd to 5th minutes of running. The following results were obtained. 1. Body temperature showed no change regardless of group difference or on land or on board measurements. 2. Pulse rate increased markedly after boarding the ship id both groups. Pulse rate increased from the first day on board at rest and after exercise as compared to the on land control value. This increase in pulse rate was more marked after exercise. Sea duty group showed less increase in pulse rate at rest than the land duty group. Standing and resting pulse rate of sea duty group on lam was 81 and increased to 87 at the 5th day on board and remained smaller than the land duty group throughout the period on board. Control standing and resting pulse rate of land duty group on land was 76 and reached 89 at the 9th day on board and thereafter decreased a little. Pulse rate of land duty group at rest on board remained greater than that of sea duty group throughout the period on board. 3. Systolic blood pressure of sea duty group increased after boarding the ship and remained higher than the control value on land. In the land duty group, however, systolic blood pressure decreased during the period on board the ship. Diastolic blood pressure decreased in both groups. 4. Resting breathing rate of land duty group increased and remained higher than the control value on land. In sea duty group, however, resting breathing rate showed a transient increase on the 1st day on board and decreased thereafter to the control value on land and kept the same level throughout the period of cruise. Absolute value of breathing rate in the sea duty group was greater than the land duty group both at rest and after exercise. 5. There was a lowering of breathing efficiency in both groups. Thus, increases in tidal volume and minute ventilation volume and decreases in maximum breathing capacity, vital capacity, capacity ratio and air velocity Index were observed after boarding the ship. An increase in ventilation equivalent was also observed in both groups. The lowering of breathing efficiency was more marked in the land duty group than the sea duty group. 6. Energy expediture increased in both groups during their stay on the ship and was more marked in the sea duty group. 7, Lactate concentration in venous blood at rest and after exercise increased after boarding the ship and no group difference was observed.

  • PDF

A Design-Decision Support Framework for Evaluation of Design Options in Passenger Ship Engine Room

  • Kim, Soo-Woong;Lee, Hyun-Jin;Kwon, Young-Sub
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.277-280
    • /
    • 2006
  • Most real world design evaluation and risk-based decision support combine quantitative and qualitative (linguistic) variables. Decision-making based on conventional mathematics that combines qualitative and quantitative concepts always exhibit difficulty in modelling actual problems. The successful selection process for choosing a design/procurement proposal is based on a high degree of technical integrity, safety levels and low costs in construction, corrective measures, maintenance, operation, inspection and preventive measures. However, the objectives of maximising the degree of technical performance, maximising the safety levels and minimising the costs incurred are usually in conflict, and the evaluation of the technical performance, safety and costs is always associated with uncertainties, especially for a novel system at the initial concept design stage. In this paper, a design-decision support framework using a composite structure methodology grounded in approximate reasoning approach and evidential reasoning method is suggested for design evaluation of machinery space of a ship engine room at the initial stages. It is a Multiple Attribute Decision-Making (MADM) or Multiple Criteria Decision Making (MCDM) framework, which provides a juxtaposition of cost, safety and technical performance of a system during evaluation to assist decision makers in selecting the winning design/procurement proposal that best satisfies the requirement in hand. An illustrative example is used to demonstrate the application of the proposed framework.

  • PDF

Shape Design of Construction Equipment Tailpipe for Noise Reduction and Engine Room Cooling (소음 및 엔진룸 냉각개선을 위한 건설기계테일파이프의 형상설계)

  • Kim, Seong-Jae;Yang, Ji-Hae;Kim, Nag-In;Kim, Jou-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.737-740
    • /
    • 2004
  • The interior noise reduction of construction equipment is concerned for improving the driver comfort in this study. From the baseline test, the exhaust noise gives a big contribution to the interior noise of construction equipment. And the detail noise contribution analysis of the exhaust system, the tail pipe, which is for ventilation an engine room hot air to outside, amplify the exhaust noise around operating engine RPM associated with tail pipe structural and cavity resonances. To remove the noise amplifying effects, the tail pipe has to be shorted its length. Even the noise can be attenuated the ventilation flux when using the redesigned tail pipe is reduced than the original one. Thus, a shape change of the tail pipe is additionally needed for increasing the ventilation flux and attenuating the exhaust noise using CFD technique. The CFD results of the tail pipe give a meaning full information what obstructs the ventilation flex in the current design and how changes the tail pipe.

  • PDF