• Title/Summary/Keyword: Energy-Subtraction

Search Result 54, Processing Time 0.017 seconds

Normalization of Spectral Magnitude and Cepstral Transformation for Compensation of Lombard Effect (롬바드 효과의 보정을 위한 스펙트럼 크기의 정규화와 켑스트럼 변환)

  • Chi, Sang-Mun;Oh, Yung-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.83-92
    • /
    • 1996
  • This paper describes Lombard effect compensation and noise suppression so as to reduce speech recognition error in noisy environments. Lombard effect is represented by the variation of spectral envelope of energy normalized word and the variation of overall vocal intensity. The variation of spectral envelope can be compensated by linear transformation in cepstral domain. The variation of vocal intensity is canceled by spectral magnitude normalization. Spectral subtraction is use to suppress noise contamination, and band-pass filtering is used to emphasize dynamic features. To understand Lombard effect and verify the effectiveness of the proposed method, speech data are collected in simulated noisy environments. Recognition experiments were conducted with contamination by noise from automobile cabins, an exhibition hall, telephone booths in down town, crowded streets, and computer rooms. From the experiments, the effectiveness of the proposed method has been confirmed.

  • PDF

Establishment of DeCART/MIG stochastic sampling code system and Application to UAM and BEAVRS benchmarks

  • Ho Jin Park;Jin Young Cho
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1563-1570
    • /
    • 2023
  • In this study, a DeCART/MIG uncertainty quantification (UQ) analysis code system with a multicorrelated cross section stochastic sampling (S.S.) module was established and verified through the UAM (Uncertainty Analysis in Modeling) and the BEAVRS (Benchmark for Evaluation And Validation of Reactor Simulations) benchmark calculations. For the S.S. calculations, a sample of 500 DeCART multigroup cross section sets for two major actinides, i.e., 235U and 238U, were generated by the MIG code and covariance data from the ENDF/B-VII.1 evaluated nuclear data library. In the three pin problems (i.e. TMI-1, PB2, and Koz-6) from the UAM benchmark, the uncertainties in kinf by the DeCART/MIG S.S. calculations agreed very well with the sensitivity and uncertainty (S/U) perturbation results by DeCART/MUSAD and the S/U direct subtraction (S/U-DS) results by the DeCART/MIG. From these results, it was concluded that the multi-group cross section sampling module of the MIG code works correctly and accurately. In the BEAVRS whole benchmark problems, the uncertainties in the control rod bank worth, isothermal temperature coefficient, power distribution, and critical boron concentration due to cross section uncertainties were calculated by the DeCART/MIG code system. Overall, the uncertainties in these design parameters were less than the general design review criteria of a typical pressurized water reactor start-up case. This newly-developed DeCART/MIG UQ analysis code system by the S.S. method can be widely utilized as uncertainty analysis and margin estimation tools for developing and designing new advanced nuclear reactors.

Performance Improvement of Speech Enhancement Using Independent Component Analysis and Perceptual Filtering (독립 성분 분석과 지각 필터를 이용한 음질 개선)

  • Koo, Kyo-Sik;Cha, Hyung-Tai
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.270-277
    • /
    • 2010
  • In this paper, we proposed an algorithm that improves tone quality of noisy audio signals by using ICA(Independent Component Analysis) algorithm and perceptual filters. Many algorithms have been proposed to eliminate the noise from the audio signals, such as spectral subtraction method, perceptual filter, etc. The perceptual filter uses a noise that is acquired from silent ranges in the input signal. In this case, the improvement rate of tone quality decreases if the noise energy is changed by the environmental variation in a signal frame. But the proposed method estimates a noise that is changed at each frame using ICA algorithm. The estimated noise is applied to perceptual filter. To show the performance of the proposed algorithm, several tests are performed to various input signals. With the proposed algorithm, we could confirm the enhancement of tone quality in terms of segmental SNR (SSNR), noise-to-mask ratio (NMR) and Degradation Category Rating (DCR) test.

Improved Activity Estimation using Combined Scatter and Attenuation Correction in SPECT (단일광자방출단층촬영 영상에서 산란 및 감쇠 보정에 위한 절대방사능 측정)

  • Lee, Jeong-Rim;Choi, Chang-Woon;Lim, Sang-Moo;Hong, Seong-Wun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.4
    • /
    • pp.382-390
    • /
    • 1998
  • Purpose: The purpose of this study was to evaluate the accuracy of radioactivity quantitation in Tc-99m SPECT by using combined scatter and attenuation correction. Materials and Methods: A cylindrical phantom which simulates tumors (T) and normal tissue (B) was filled with varying activity ratios of Tc-99m. We acquired emission scans of the phantom using a three-headed SPECT system (Trionix, Inc.) with two energy windows (photopeak window: $126{\sim}154keV$ and scatter window: $101{\sim}123keV$). We performed the scatter correction with dual-energy window subtraction method (k=0.4) and Chang attenuation correction. Three sets of SPECT images were reconstructed using combined scatter and attenuation correction (SC+AC), attenuation correction (AC) and without any correction (NONE). We compared T/B ratio, image contrast [(T-B)/(T+B)] and absolute radioactivity with true values. Results: SC+AC images had the highest mean values of T/B ratios. Image contrast was 0.92 in SC+AC, which was close to the true value of 1, and higher than AC (0.77) or NONE (0.80). Errors of true activity by SPECT images ranged from 1 to 11% for SC+AC, $22{\sim}47%$ for AC, and $2{\sim}16%$ for NONE in a phantom which was located 2.4cm from the phantom surface. In a phantom located 10.0cm from the surface, SC+AC underestimated by 24%, NONE 40%. However, AC overestimated by 10%. Conclusion: We conclude that accurate SPECT activity quantitation of Tc-99m distribution can be achieved by dual window scatter correction combind with attenuation correction.

  • PDF