• Title/Summary/Keyword: Energy-Regenerative Lift

Search Result 3, Processing Time 0.015 seconds

A study of Performance Requirement for Energy-Regenerative Lift (회생에너지 재생시스템을 적용한 건설용 리프트의 요구성능 도출)

  • Won, Myeungkyun;Lim, Hyunsu;Lee, Myungdo;Cho, Hunhee;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.205-206
    • /
    • 2011
  • Various studies on energy saving for construction sites have been carried out and some construction machines using motors have installed regenerative systems such as elevators and excavators. The construction lift also uses motors and generates more regenerative energy when the lifts descend because lifts convey many construction materials and workers. For this reason, it is possible to apply the regenerative system to the construction lift. However, if the system is applied without considering the lift's characteristics, the new development would fail; we therefore need to propose a performance requirement. Thus, the purpose of this study is to propose a performance requirement for the energy-regenerative lift prior to developing the energy-regenerative lift.

  • PDF

A Feasibility Study for a Stratospheric Long-endurance Hybrid Unmanned Aerial Vehicle using a Regenerative Fuel Cell System

  • Cho, Seong-Hyun;Cha, Moon-Yong;Kim, Minjin;Sohn, Young-Jun;Yang, Tae-Hyun;Lee, Won-Yong
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.41-51
    • /
    • 2016
  • In the stratosphere, the air is stable and a photovoltaic (PV) system can produce more solar energy compared to in the atmosphere. If unmanned aerial vehicles (UAVs) fly in the stratosphere, the flight stability and efficiency of the mission are improved. On the other hand, the weakened lift force of the UAV due to the rarefied atmosphere can require more power for lift according to the weight and/or wing area of the UAV. To solve this problem, it is necessary to minimize the weight of the aircraft and improve the performance of the power system. A regenerative fuel cell (RFC) consisting of a fuel cell (FC) and water electrolysis (WE) combined PV power system has been investigated as a good alterative because of its higher specific energy. The WE system produces hydrogen and oxygen, providing extra energy beyond the energy generated by the PV system in the daytime, and then saves the gases in tanks. The FC system supplies the required power to the UAV at night, so the additional fuel supply to the UAV is not needed anymore. The specific energy of RFC systems is higher than that of Li-ion battery systems, so they have less weight than batteries that supply the same energy to the UAV. In this paper, for a stratospheric long-endurance hybrid UAV based on an RFC system, three major design factors (UAV weight, wing area and performance of WE) affecting the ability of long-term flight were determined and a simulation-based feasibility study was performed. The effects of the three design factors were analyzed as the flight time increased, and acceptable values of the factors for long endurance were found. As a result, the long-endurance of the target UAV was possible when the values were under 350 kg, above 150 m2 and under 80 kWh/kg H2.

A Study on Acquisition of Overhead Line Location Information of Pantograph for E-Highway (E-Highway를 위한 팬터그래프의 가공선 위치정보 취득에 관한 연구)

  • Gwang-Cheol Song;Jun-Jae An;Tuan-Vu Le;Seong-Mi Park;Sung-Jun Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.915-923
    • /
    • 2023
  • As environmental regulations on carbon emissions are strengthened worldwide, the existing internal combustion engine-centered automobile industry is being reformed. In particular, large buses and large cargo trucks are pointed out as one of the main causes of environmental destruction due to excessive carbon emissions. The E-Highway power collection system, which has recently been proposed as a solution, uses the vehicle's battery as a backup power source or regenerative braking, depending on whether the pan head of the pentograph installed in the vehicle is in contact with the overhead line. It is used to store the excess energy generated. However, wear through contact due to continuous contact reduces the current collection effect and causes failure. In this paper, by using the current difference, the horizontal position information of the panhead in contact with the overhead line is acquired, thereby reducing the abrasion of the conductor and the panhead Make it possible to follow the overhead line. The position estimation method proposed in this paper simply configures a device that can detect the position of the overhead line of the pantograph by the difference in resistance. It is economical and has the advantage of reducing the volume. The characteristics of the pantograph estimating the location of overhead lines were analyzed using the difference between the two currents of the current collector, the feasibility of the positioning estimation system was verified through simulations and experiments.