• Title/Summary/Keyword: Energy water

Search Result 9,190, Processing Time 0.036 seconds

A Comparative Study on the Energy Efficiency due to the Capacity of Gas Boiler (가스온수가열기의 용량에 따른 에너지효율성 비교 연구)

  • Kim, Seong Jung;Woo, In sung
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.2
    • /
    • pp.229-234
    • /
    • 2015
  • Depending on the living styles, the types of energy consumed by households have changed, and the consumption has increased rapidly. Consequently, those have led to environmental issues, such as exhaustion of energy and the climate changes. As one of solutions to such issues, energy efficiency can be approached. Therefore, in this study, the gas water heater(115S type Rheem products) that made in Germany and obtain hot water using gas as a heat source is selected. a $1.0m^3$ water tank with a 6kW electronic heater is installed and a water temperature and pressure is maintain constantly also thermometer is injected. Two of gas meter, one of pressure regulator and three of time measurement devices are installed in a combustion facility and fuelling facility with a magnet valve so it can observe and record combustion reactions. Quantity of hot water that heated by boiler is recorded using a quantity measurement tank, and have been heated by the boiler have been to record and measure the amount and utilized the data acquired through measurement of all factors that are applied to acquire hot water in order to calculate the use rate of final energy. In conclusion, this researcher drew the economic strong points of the hot water generated by gas.

Evaluation of a Sodium-Water Reaction Event Caused by Steam Generator Tubes Break in the Prototype Generation IV Sodium-cooled Fast Reactor

  • Ahn, Sang June;Ha, Kwi-Seok;Chang, Won-Pyo;Kang, Seok Hun;Lee, Kwi Lim;Choi, Chi-Woong;Lee, Seung Won;Yoo, Jin;Jeong, Jae-Ho;Jeong, Taekyeong
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.952-964
    • /
    • 2016
  • The prototype generation IV sodium-cooled fast reactor (PGSFR) has been developed by the Korea Atomic Energy Research Institute. This reactor uses sodium as a reactor coolant to transfer the core heat energy to the turbine. Sodium has chemical characteristics that allow it to violently react with materials such as a water or steam. When a sodium-water reaction (SWR) occurs due to leakage or breakage of steam generator tubes, high-pressure waves and corrosive reaction products are produced, which threaten the structural integrity of the components of the intermediate heat-transfer system (IHTS) and the safety of the primary heat-transfer system (PHTS). In the PGSFR, SWR events are included in the design-basis event. This event should be analyzed from the viewpoint of the integrities of the IHTS and fuel rods. To evaluate the integrity of the IHTS based on the consequences of the SWR, the behaviors of the generated high-pressure waves are analyzed at the major positions of a failed IHTS loop using a sodium-water advanced analysis method-II code. The integrity of the fuel rods must be consistently maintained below the safety acceptance criteria to avoid the consequences of the SWR. The integrity of the PHTS is evaluated using the multidimensional analysis of reactor safety-liquid metal reactor code to model the whole plant.

Removal Efficiency of Water Contents using Inertial Impaction Separator with Change in Relative Humidity (입구 습도 변화에 따른 관성 충돌 방식의 액적 분리장치의 수분제거효율 변화)

  • Song, Dong Keun;Lee, Sin Young;Hong, Won Seok;Shin, Wanho;Kim, Gyujin;Kim, Hanseok
    • Particle and aerosol research
    • /
    • v.9 no.4
    • /
    • pp.247-252
    • /
    • 2013
  • Removal of water contents in a gas is needed in industrial field of gas processing related on energy production/conversion, and environmental treatment. Inertial separators are economic devices for separating droplets from the gas stream. For design and incorporation of inertial pre-treatment separator, characteristics of removal of water contents with various operation conditions are needed. In this study, removal efficiency of water droplets at various flowrates (5-14 SCMM) and relative humidity (R.H.) conditions (40%, and 90%) has been investigated. At low R.H. condition, the removal characteristic is similar to the removal of solid particles. But, droplet growth resulting from the condensation of water vapor at high R.H. condition, is significant and it made increase in removal efficiency of droplet phase of water contents. For rapid removal of water contents, an effective method to enhancing condensation growth of water droplets is highly needed.

Applicability of reliability indices for water distribution networks (공급부하 시나리오에 따른 상수관망 신뢰도 지수의 적용성 분석)

  • Jeong, Gimoon;Kang, Doosun
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.7
    • /
    • pp.441-453
    • /
    • 2017
  • Water distribution networks (WDNs) supply drinking water to end users by maintaining sufficient water pressure for reliable water supply in normal and abnormal conditions. To design and operate WDNs in efficient way, it is required to quantify water supply ability of the network. Various reliability indices have been developed and applied in this field. Most of the reliability indices are calculated based on the energy within a network; that is, the total energy entered the network, the energy dissipated through water supply process, and the energy finally supplied at the nodes, etc. This study explains the energy composition in WDNs and introduces three well-known reliability indices developed based on the energy composition of the network. The three indices were applied to a study network under various demand loading scenarios that could occur in real-life operation practices. This study aimed to investigate the applicability of the reliability indices under abnormal scenarios and proposed to illustrate the spatial distribution of the system reliability in more intuitive way for proper responses to the abnormal situations.

A Study on Specific of Ground Water Temperature Changes of the Small Scaled SCW GWHP System in Case of Heating (소규모 SCW 지중열 시스템의 난방시 지하수 온도 변화 특성에 관한 연구)

  • Yang, Seung-Jin;Lee, Won-Ho;Kim, Ju-Young;Hong, Won-Hwa;Ahn, Chang-whan
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1347-1352
    • /
    • 2008
  • The SCW ground heat pump system releases ground energy from the ground water of ground heat exchanger. In other word, ground water is used to heating through releases ground energy which oneself has. But the thermal efficiency of system is going to down because repetitive process of ground water will lost ground energy in standing column well system and if heating load is continually increase, energy of ground water may be frozen or there are no benefits to use ground energy as it owes just little energy. To solve these problems, there are need to exchange water to the ground heat exchanger then the way will be used to maintain Efficiency continually as the way of to be supplied with fresh ground water into ground heat exchanger. However, this type causes waste of ground water. Therefore it is essential to discharge water to outside timely on a heat exchanger. Therefor through a study, find out the best time to discharge water to outside and exchange water to ground heat exchanger, and propose to the DB of design of the ground heat exchanger.

  • PDF

Research on Water-Repellent Coating Materials to Prevent Solar Module Pollution (태양광 모듈 오염 방지를 위한 발수 코팅 물질에 대한 연구 )

  • Young-A Park;Da Yeon Jung;Hyun Chul Ki
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.182-187
    • /
    • 2024
  • Currently, the most developed new energy source is solar energy. Because solar power is installed outside, it is exposed to many pollutants. Pollutants are causing the characteristics of solar energy to deteriorate. Therefore, this study aims to develop a water-repellent coating to prevent contamination of solar modules. Silica and Titania materials are mainly used as water-repellent coating materials. In this study, it was based on silica and the contact angle characteristics were measured according to the change in the amount of silica and ammonia water added and the number of coatings. As a result of the measurement, it was confirmed that the contact angle was more than 60 degrees when 0.5 mol of TEOS was added to 50 mL and 0.15 M when 1 mL of ammonia water was added to 296.47 ml of distilled water. And it was confirmed that the contact angle improved when the number of coatings was applied twice. A water-repellent coating material was applied to low iron tempered glass used to protect dye-sensitized solar cell modules. The characteristics of the module were measured after spraying DI-Water on low-emission tempered glass with a water-repellent coating. As a result of the measurement, the efficiency of the module without application, the efficiency of the module coated once, and the module coated twice were 4.87%, 4.90%, and 4.91%, respectively. It was confirmed that the efficiency of the module increased by applying water-repellent coating. As a result of this study, it is determined that the water-repellent coating material will help improve solar power generation efficiency and lifespan by being self-cleaning and non-reflective.

The Development of monitoring system for demonstration research of solar hot water heater for dwellings (실증연구를 위한 주택용 태양열 온수기 모니터링 시스템 개발)

  • 양동조;김재열;한재호;송경석;김우진
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.156-161
    • /
    • 2004
  • The application of solar energy, in the field of alternative energy, was on the increase tendency. In the case of advanced nations, through continuous R&D, solar hot water heater with high efficiency has been used for the house and the industrial process on business, advanced nations were reached up the experimental stage of solar generation system. But, the actual circumstance of the domestic has been not accomplished the popularization of solar hot water heater and the settlement of it which is the fundamental stage of the solar energy usage. This trouble, the domestic was flooded with small enterprise for producing solar hot water heater, was caused by the popularization and the production without verification of performance. To supply the monitoring program for evaluating solar hot water heater, this research was purpose to improve the technical development of the enterprise for producing solar-heat hot-water-boiler and served as an aid for the enlargement and the popularization on solar energy.

  • PDF

A Study on Heating Characteristics of Ground Source Heat Pump with Variation of Heat Exchange Methods (열교환방식에 따른 지열히트펌프의 난방특성에 관한 연구)

  • Cha, Dong-An;Kwon, Oh-Kyung;Park, Cha-Sik
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.2
    • /
    • pp.9-15
    • /
    • 2012
  • The objective of this study is to investigate the influence on the heating performance for a water-to-water 10RT ground source heat pump by using the water switching and refrigerant switching method. The test of water-to-water ground source heat pump was measured by varying the compressor speed, load side inlet temperature, and ground heat source side temperature. The heating capacity and COP of the heat pump increased with increasing ground heat source temperature. As a result, compared to a refrigerant switching method, the water switching method with counter flow improves the heating capacity and COP by approximately 5% in average, respectively.

Economic Evaluation on Energy System Using River Water (하천수 이용 열원시스템의 경제성 평가)

  • Lee, Chulgoo;Kim, Jongdae;Im, Taesoon;Choi, Myungsik;Pang, Seungki;Ham, Heungdon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.9 no.2
    • /
    • pp.25-31
    • /
    • 2013
  • It has become very important for unused energy to be used for building air conditioning. Economic evaluation on energy system by using river water as a heat source, which is one of the unused energy, was carried out. The floor area of the building and the distance between heat source equipment and river was assumed $50,000m^2$ and 200 m. General heat source system using absorption chiller-heater was used for comparing to the energy saving system, and payback period method using initial cost and running cost of two systems, was used to perform economic evaluation. According to development of high capacity of water source heat pump which is appropriate for using river water, initial cost for the system has been reduced. Payback period was about 3.2 years, and this period might be shortened if nation's economic support enact.

An Estimation of Quantity of Unused Energy of River Water, Seawater and Treated Sewage as Heat Source and Its Availability in Large Facilities (대규모 시설에서 이용가능한 미활용 에너지의 부존량과 그 이용 가능성에 관한 조사연구-하천수.해수.하수처리수를 중심으로)

  • Heo, Jae-Yeong
    • Journal of National Security and Military Science
    • /
    • s.1
    • /
    • pp.423-446
    • /
    • 2003
  • While the demand for energy has shown a sharp increase recently, the supply seems to be limited by the fact that the conventional fossil fuel energy or nuclear energy has its own environmental problems such as, for example, global warming or nuclear waste disposal. To overcome such limited supply of energy, the utilization of natural thermal energy such as river water and seawater as well as treated sewage can be a substantial supplement. The potential use of the unused energy has become more and more feasible these days as the heat pump technology has been advanced. In the present study, the unused energy resources are estimated on regional and monthly basis for each resource by the method proposed here in order to establish the fundamental data for its utilization. The potential use of the unused energy is a1so discussed.

  • PDF