• Title/Summary/Keyword: Energy use behavior

Search Result 395, Processing Time 0.026 seconds

Examination of the Fragmentation Behavior of Hemin and Bilin Tetrapyrroles by Electrospray Ionization and Collision-induced Dissociation

  • Sekera, Emily R.;Wood, Troy D.
    • Mass Spectrometry Letters
    • /
    • v.9 no.4
    • /
    • pp.91-94
    • /
    • 2018
  • Bilin tetrapyrroles are metabolic products of the breakdown of porphyrins within a species. In the case of mammals, these bilins are formed by the catabolism of heme and can be utilized as either biomarkers in disease or as an indicator of human waste contamination. Although a small subset of bilin tandem mass spectrometry reports exist, limited data is available in online databases for their fragmentation. The use of fragmentation data is important for metabolomics analyses to determine the identity of compounds detected within a sample. Therefore, in this study, the fragmentation of bilins generated by positive ion mode electrospray ionization is examined by collision-induced dissociation (CID) as a function of collision energy on an FT-ICR MS. The use of the FT-ICR MS allows for high mass accuracy measurements, and thus the formulas of resultant product ions can be ascertained. Based on our observations, fragmentation behavior for hemin, biliverdin and its dimethyl ester, phycocyanobilin, bilirubin, bilirubin conjugate, mesobilirubin, urobilin, and stercobilin are discussed in the context of the molecular structure and collision energy. This report provides insight into the identification of structures within this class of molecules for untargeted analyses.

Characteristics of Electric-Power Use in Residential Building by Family Composition and Their Income Level (거주자 구성유형 및 소득수준에 따른 주거용 건물 내 전력소비성향)

  • Seo, Hyun-Cheol;Hong, Won-Hwa;Nam, Gyeong-Mok
    • Journal of the Korean housing association
    • /
    • v.23 no.6
    • /
    • pp.31-38
    • /
    • 2012
  • In this paper, we draws tendency of the electricity consumption in residential buildings according to inhabitants Composition types and the level of incomes. it is necessary to reduce energy cost and keep energy security through the electricity demand forecasting and management technology. Progressive social change such as increases of single household, the aging of society, increases in the income level will replace the existing residential electricity demand pattern. However, Only with conventional methods that using only the energy consumption per-unit area are based on Energy final consumption data can not respond to those social and environmental change. To develop electricity demand estimation model that can cope flexibly to changes in the social and environmental, In this paper researches propensity of electricity consumption according to the type of residents configuration, the level of income. First, we typed form of inhabitants in residential that existed in Korea. after that we calculated hourly electricity consumption for each type through National Time-Use Survey performed at the National Statistical Office with considering overlapping behavior. Household appliances and retention standards according to income level is also considered.

Eco-friendly ductile cementitious composites (EDCC) technique for seismic upgrading of unreinforced masonry (URM) infill walls: A review of literature

  • Haider Ali, Abbas;Naida, Ademovic;Husain K., Jarallah
    • Earthquakes and Structures
    • /
    • v.23 no.6
    • /
    • pp.527-534
    • /
    • 2022
  • EDCC (Eco-Friendly Ductile Cementitious Composites) is a recently created class of engineered cementitious composites that exhibit extremely high ductility and elastoplastic behavior under pure tension. EDCC contains reduced amounts of cement and very large volumes of fly ash. Due to these properties, EDCC has become one of the solutions to use in seismic upgrading. This paper discloses previous studies and research that discussed the seismic upgrading of unreinforced, non-grouted, unconfined, and non-load bearing masonry walls which are called URM infill walls using the EDCC technique. URM infill wall is one of the weak links in the building structure to withstand the earthquake waves, as the brittle behavior of the URM infill walls behaves poorly during seismic events. The purpose of this study is to fill a knowledge gap about the theoretical and experimental ways to use the EDCC in URM infill walls. The findings reflect the ability of the EDCC to change the behavior from brittle to ductile to a certain percentage behavior, increasing the overall drift before collapse as it increases the energy dissipation, and resists significant shaking under extensive levels with various types and intensities.

Cyclic behavior of extended end-plate connections with shape memory alloy bolts

  • Fanaie, Nader;Monfared, Morteza N.
    • Structural Engineering and Mechanics
    • /
    • v.60 no.3
    • /
    • pp.507-527
    • /
    • 2016
  • The use of shape memory alloys (SMAs) has been seriously considered in seismic engineering due to their capabilities, such as the ability to tolerate cyclic deformations and dissipate energy. Five 3-D extended end-plate connection models have been created, including one conventional connection and four connections with Nitinol bolts of four different prestress forces. Their cyclic behaviors have been investigated using the finite element method software ANSYS. Subsequently, the moment-rotation responses of the connections have been derived by subjecting them to cyclic loading based on SAC protocol. The results obtained in this research indicate that the conventional connections show residual deformations despite their high ductility and very good energy dissipation; therefore, they cannot be repaired after loading. However, while having good energy dissipation and high ductility, the connections equipped with Nitinol bolts have good recentering capability. Moreover, a connection with the mentioned specifications has been modeled, except that only the external bolts replaced with SMA bolts and assessed for seismic loading. The suggested connection shows high ductility, medium energy dissipation and very good recentering. The main objective of this research is to concentrate the deformations caused by cyclic loading on the connection in order to form super-elastic hinge in the connection by the deformations of the shape memory alloy bolts.

A Study on Thermal Behavior and Stress Characteristics of Discs under Braking Conditions for Automobiles (자동차 브레이크 제동시 디스크의 열적거동 및 응력 특성에 관한 연구)

  • Baek, Il-Hyun
    • Tribology and Lubricants
    • /
    • v.28 no.5
    • /
    • pp.246-251
    • /
    • 2012
  • Disc brakes and brake linings are part of the braking system in automobiles; this system works due to the braking power between the disc and pad. Vehicle braking systems have complex environments due to the geometry of the disk and pad, the material properties, the braking conditions, etc. Braking energy is converted into thermal energy during the braking process, due to the frictional heat between the disc brake and pad. This heat is changed to a heat flux, which affects the thermal stress of the disc. The purpose of this study was to use the fluid dynamics software ANSYS CFX to investigate the inner flow characteristics of the air and the heat transfer of the disc, and to analyze the effects on the thermal stress of the disc brake.

Occupants Control Patterns of Indoor Shading Devices in Apartment Buildings (공동주택 거주자의 실내 차양장치 사용행태에 관한 연구)

  • Lee, Yoon Jeong;Kim, Jeong-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.3
    • /
    • pp.12-20
    • /
    • 2014
  • There is no comprehensive consensus of the control patterns people op::rate shadings or the motivating factors that influence their decisions. Patterns of shading devices use can affect the energy consumption of buildings. Therefore, this study aims to analyze shading device usage patterns based on the physical factors that can affect occupants behavior. First, control patterns of indoor shading devices in apartment buildings were monitored by taking pictures. Next, frequency of shading device use together with their shading portions was analyzed based on two physical factors such as window orientation and floor level. The results showed that about 35% of the monitored apartment buildings utilized indoor shading devices. Also, the south-facing apartments were more dynamically used than their east-facing counterparts. On the contrary, there was no general trend in regards to the shading operation patterns.

Rank Correlation Coefficient of Energy Data for Identification of Abnormal Sensors in Buildings (에너지 데이터의 순위상관계수 기반 건물 내 오작동 기기 탐지)

  • Kim, Naeon;Jeong, Sihyun;Jang, Boyeon;Kim, Chong-Kwon
    • Journal of KIISE
    • /
    • v.44 no.4
    • /
    • pp.417-422
    • /
    • 2017
  • Anomaly detection is the identification of data that do not conform to a normal pattern or behavior model in a dataset. It can be utilized for detecting errors among data generated by devices or user behavior change in a social network data set. In this study, we proposed a new approach using rank correlation coefficient to efficiently detect abnormal data in devices of a building. With the increased push for energy conservation, many energy efficiency solutions have been proposed over the years. HVAC (Heating, Ventilating and Air Conditioning) system monitors and manages thousands of sensors such as thermostats, air conditioners, and lighting in large buildings. Currently, operators use the building's HVAC system for controlling efficient energy consumption. By using the proposed approach, it is possible to observe changes of ranking relationship between the devices in HVAC system and identify abnormal behavior in social network.

Improvement of the Thermal Behavior of the Secondary Part of Synchronous Linear Motors with High Speed and Thrust (고속.대추력 동기식 리니어모터 세컨더리 파트의 열특성 향상)

  • Eun, In-Ung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.505-512
    • /
    • 2011
  • Linear permanent magnet synchronous motors utilize high-energy product permanent magnet to produce high thrust, velocity and acceleration. Such motors are finding applications requiring high positioning accuracy and speed response, for example, machine tools, in the absence of mechanical gears and ball screw systems. A disadvantage of the linear motors is high power loss in comparison with rotary motors. For the application of the linear motors to machine tools, it is required to use water coolers and to improve the thermal behavior through insulation and structure optimization or control strategies. This paper presents the function of the secondary part of the linear synchronous motor as to the thermal behavior and the improving method. The result shows cooling pipe combined with an insulation layer is a suitable design for improving of the thermal behavior.

Free Vibration Analysis of Perforated Plates Using Equivalent Elastic Properties

  • Park, Suhn;Jeong, Kyeong-Hoon;Kim, Tae-Wan;Kim, Kang-Soo;Park, Keun-Bae
    • Nuclear Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.416-423
    • /
    • 1998
  • Many studies for the perforated plates have been done, especially on the subject of static behavior and stress distribution in the plate. Equivalent elastic properties are one of the successive concepts for this problem. However little effort was taken to get their dynamic characteristics. In this paper finite element modal analysis was performed for the perforated plates having square and triangular hole patterns. An attempt to use existing equivalent elastic properties into the modal analysis of the plate was carried out. To verify feasibility of the finite element models, modal test was also performed on one typical perforated plate. System parameters such as natural frequencies and mode shapes were extracted and compared with the analysis results.

  • PDF

Mechanical behavior of concrete comprising successively recycled concrete aggregates

  • Verma, Surender K.;Ashish, Deepankar K.
    • Advances in concrete construction
    • /
    • v.5 no.4
    • /
    • pp.303-311
    • /
    • 2017
  • The concrete industry of developing countries like India consumes majority of natural resources. The increase in population has necessitated the construction of more and more structures. Further many structures have completed their life span or have undergone damages thus warranting the demolition of these structures. India produces approximately 23.75 million tons of recycled concrete aggregate (RCA) annually. The natural resources are depleting at a higher rate with the increasing demand of concrete industry. This difficulty can be reduced with the use of RCA in land fill and concrete manufacturing. Use of RCA can provide cost savings and better energy utilization. This paper presents mechanical behavior of concrete comprising successively recycled concrete aggregate. Mechanical properties of recycled concrete get affected with number of recycling. In mix design successive recycled concrete aggregate (SRCA) was used in place of natural aggregates (NA) with 100% replacement. The test results of the compressive, flexural strength and pulse velocity were obtained for 14 and 28 days of curing age which showed significant improvement in results.