• Title/Summary/Keyword: Energy simulation

Search Result 8,036, Processing Time 0.041 seconds

Peak Cooling and Heating Load and Energy Simulation Study for a Special Greenhouse Facility (유리 온실 시설의 연간 냉난방 부하 및 에너지 시뮬레이션에 관한 연구)

  • Jang, Jea-Chul;Kang, Eun-Chul;Lee, Euy-Joon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.72-76
    • /
    • 2009
  • A peak cooling and heating load($kW/m^2$) and annual energy($kWh/m^2{\cdot}yr$) have been simulated for a special greenhouse located near Seoul. The special facility was designed for living plant and butterfly with many visitors. The design conditions for the facility have been discussed with the designer and simulated with the weather and building conditions. The load and energy simulation was done by TRNSYS 15 based on IPMVP 4.4.2.'s simulation requirement. The results have been shown in terms of area($kW/m^2$) and volume load and energy index($kWh/m^2{\cdot}yr$). Considering the higher height of the facility, The results came out reasonably comparing the index of a typical commercial building signed as $462kWh/m^2{\cdot}yr$.

  • PDF

Analysis of Utilizing Regenerative Energy in Railway System through a DC Power Supply Simulation (DC 급전시뮬레이션을 통한 도시철도 회생에너지 활용 분석)

  • Shin, Seungkwon;Jung, Hosung;Kim, Hyungchul;Park, Jongyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1479-1484
    • /
    • 2014
  • This paper deals with regenerative energy in railway system which one of the largest customer in terms of load capability. Unlike the other loads of power system, loads of railway systems change in time and space. It has a characteristic amount of generating regenerative energy by frequent starting and braking in railway system. Therefore, it is expected higher utilization in railway system than the other systems. The purpose of DC power supply simulation is analyzing backed energy, regenerative energy by each railway vehicle and substation. In this paper, regenerative energy utilization are analyzed using DC power supply simulation and it is performed changing major influence on the design such as the number of installing absorber, internal resistance value, no-load voltage value at substation or operating parameters at regenerative energy utilization. After simulating, results are compared and analyzed.

Thermal Performance Evaluation of Movable Insulation System in Apartments (공동주택 발코니창에 설치된 가동단열 시스템의 열성능 평가)

  • Yoon, Jong-Ho;Kim, Byoung-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.5
    • /
    • pp.28-35
    • /
    • 2008
  • The aim of this study was to analysis the Heating/cooling performance of movable insulation system built in apartments. The process of this study is as follows: 1) Test-cells of movable insulation are designed through the investigation of previous paper and work. The type of the movable insulation used in test-cell is low emissivity(5%) insulation, measured for heating season and the thermal effects are analyzed. 2) The simulation program(Design Builder) was used in energy performance analysis. the reference model of simulation was made up to analysis energy performance on movable insulation system. 3) Selected reference model(Floors:15, Area of Unit:115.5$m^2$) for heating/cooling energy analysis, Energy performance simulation with various variants, such as slate angle of movable insulation(5$^{\circ}$, 30$^{\circ}$, 50$^{\circ}$) and position of movable insulation. Consequently, When movable insulation system is equipped with balcony window of Apartment, Annual heating energy of reference model was cut down at the average of 5.4kWh/$m^2$ or 4.6% of heating/cooling energy.

Performance Analysis of Sensible and Latent Energy Recovery System for Thermally Controlled Facility

  • Park, Byung-Kyu;Kim, Moo-Geun;Kim, Geun-Oh
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.4
    • /
    • pp.17-26
    • /
    • 2001
  • Simulation was conducted using TRNSYS to evaluate the thermal performance of a facility. This facility has a condensing-type heat exchanger which is able to recover the latent energy for the purpose of reducing the heating energy in winter. The boiler and chiller are selected based on the annual peak loads and controlled to maintain the facility at the set temperature of 14~$17^\circ{C}$. Supplied energy by the boiler and recovered energy by the heat exchanger were calculated as a function of number of pass through heat exchanger, kind of fuel and hot water velocity. Simulation results show that about 20% of the total heating load can be recovered by the heat exchanger and the amount of latent heat is increasing with the number of pass. This means that the efficiency of the waste energy recovery system can be increased by using a condensing-type heat exchanger rather than a traditional sensible heat exchanger.

  • PDF

The Energy Performance Evaluation of Multi-purpose Solar Window System (다기능 복합 솔라윈도우 시스템의 에너지성능평가)

  • Cho, Yil-Sik;Kim, Byoung-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.3
    • /
    • pp.10-15
    • /
    • 2010
  • The aim of this study was to analysis the Heating/cooling performance of Solar Window System built in apartments. The solar window is the idea to integrate daylight as a third form of solar energy into a PV/Solar Collector system and allows more control due to the possibility to close the reflectors. However, there can be a conflict between the desire for on one hand daylight and view and on the other hand optimal energy conversion for the PV/Solar Collector system. The process of this study is as follows: 1) The Solar Window system is designed through the investigation of previous paper and work. 2)The simulation program(ESP-r, Therm5.0, Window6.0) was used in energy performance analysis. The reference model of simulation was made up to analysis energy performance on Solar Window system. 3)Selected reference model(Floors:15, Area of Unit:$148.5m^2$) for heating/cooling energy analysis, Energy performance simulation with various variants, such as U-value of Solar Window system according to its position and angle. Consequently, When Solar Window system is equipped with balcony window of Apartment, Annual heating and cooling energy of reference model was cut down about 5%~11%.

The Energy Performance Analysis of Large Scale Store Using Dynamic Thermal Analysis Simulation Program (동적열해석프로그램을 이용한 대형할인매장의 에너지 소비 특성 분석)

  • Kim, Byoung-Soo;Hong, Won-Pyo
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.6
    • /
    • pp.44-49
    • /
    • 2010
  • The purpose of this study is to analyze the situation of energy consumption and its characteristics in large scale store. The related survey is carried out in large scale store to investigate the energy consumption and energy use trend of heating, cooling, hot water, lighting, ventilation, equipments and others. The area of large scale discount store is about $65000m^2$, located in Daejeon. For Annual Energy Analysis of building, We surveyed used energy for 1 year and simulated using a building energy simulation(TRNSYS 16). The results of this study are as follows. 1)The amount of annual total energy consumption are 18615.244MWh/yr(286.4KWh/$m^2yr$), The rate of heating, cooling and base energy(for hot water, lighting, ventilation, equipments, cooking and others) is 3054MWh/yr(47kWh/$m^2yr$), 5660.09MWh/yr(87.08kWh/$m^2yr$), 9900.47MWh/yr(152.31KWh/$m^2yr$) respectively. The total used energy is higher than others building in Korea. Especially, The energy consumption of large scale store is very depends on operating period and pattern such as space temperature, occupancy, lighting system, equipments operating schedule and etc.

Comparison of Energy Performance between Ground-Source Heat Pump System and Variable Refrigerant Flow(VRF) Systems using Simulation (시뮬레이션을 통한 지열 히트펌프 시스템과 VRF 시스템의 에너지 성능비교)

  • Sohn, Byonghu;Lim, Hyojae;Kang, Seongjae
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.3
    • /
    • pp.30-40
    • /
    • 2021
  • This paper compares the annual energy performance of four different types of air-conditioning systems in a medium-sized office building. Chiller and boiler, air-cooled VRF, ground-source VRF, and ground-source heat pump systems were selected as the systems to be compared. Specifically, the energy performance of the GSHP system and the ground-source VRF system were compared with each other and also with conventional HVAC systems including the chiller and boiler system and air-cooled VRF system. In order to evaluate and compare the energy performances of four systems for the office building, EnergyPlus, a whole-building energy simulation program, was used. The EnergyPlus simulation results show that both the GSHP and the ground-source VRF systems not only save more energy than the other two systems but also significantly reduce the electric peak demand. These make the GSHP and the VRF systems more desirable energy-efficient HVAC technologies for the utility companies and their clients. It is necessary to analyze the impact of partial load performance of ground-source heat pump and ground-source VRF on the long-term (more than 20 years) performance of ground heat exchangers and entire systems.

Assessing the ED-H Scheduler in Batteryless Energy Harvesting End Devices: A Simulation-Based Approach for LoRaWAN Class-A Networks

  • Sangsoo Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • This paper proposes an integration of the ED-H scheduling algorithm, known for optimal real-time scheduling, with the LoRaEnergySim simulator. This integration facilitates the simulation of interactions between real-time scheduling algorithms for tasks with time constraints in Class-A LoRaWAN Class-A devices using a super-capacitor-based energy harvesting system. The time and energy characteristics of LoRaWAN status and state transitions are extracted in a log format, and the task model is structured to suit the time-slot-based ED-H scheduling algorithm. The algorithm is extended to perform tasks while satisfying time constraints based on CPU executions. To evaluate the proposed approach, the ED-H scheduling algorithm is executed on a set of tasks with varying time and energy characteristics and CPU occupancy rates ranging from 10% to 90%, under the same conditions as the LoRaEnergySim simulation results for packet transmission and reception. The experimental results confirmed the applicability of co-simulation by demonstrating that tasks are prioritized based on urgency without depleting the supercapacitor's energy to satisfy time constraints, depending on the scheduling algorithm.

Artificial Lighting Energy Saving by Daylighting in Office Building (사무소건물에서 자연채광에 의한 조명에너지 절약의 평가)

  • 임병찬
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.6
    • /
    • pp.608-613
    • /
    • 2004
  • Artificial lighting accounts for a significant portion of the energy use in office buildings. Therefore, daylighting is considered one of the fundamental design features of energy-efficient buildings. However, complex daylighting simulation tools are not suitable for most designers to help in the decision-making process. This paper provides the results of a simulation analysis to determine the potential energy savings of daylighting effects reducing electrical energy consumption for office building. A whole building simulation tool is used to determine the effects of daylighting on lighting electricity use as well as total electricity use for typical office buildings. It was determined that daylighting does not provide significant additional lighting energy savings when glass transmittance is increased over 0.7 A simplified method is developed based on the analysis results to estimate the annual electrical energy savings attributed to daylighting.

Dynamic Analysis on the Energy Regenerative Brake of Hydraulic Driven Systems (유압 구동계 에너지 제생 브레이크의 동특성 해석)

  • 이재구
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.4
    • /
    • pp.137-146
    • /
    • 2000
  • The hydraulic energy regnerative brake systems is introduced in this work. An accumulator stores kinetic energy during braking action, and the stored energy is used in a following acceleration action. The dynamic model of the brake system is derived for computer simulation study, and the Runge-Kutta numerical integration method is applied to the simulation work. Since the model contains several unknown parameters, these were determined by data which had been proceeded. Through a series of computer simulation , dynamic performance of the energy regenerative brake system is compared with that of a conventional system in which a conventional brake circuit is used. A series of test is carried out in the laboratory. The dynamic characteristics of the hydraulic motor system, such as the surge pressure and response time, are investigated in both brake action and acceleration action.

  • PDF