• Title/Summary/Keyword: Energy response factor

Search Result 277, Processing Time 0.026 seconds

An Optimized PI Controller Design for Three Phase PFC Converters Based on Multi-Objective Chaotic Particle Swarm Optimization

  • Guo, Xin;Ren, Hai-Peng;Liu, Ding
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.610-620
    • /
    • 2016
  • The compound active clamp zero voltage soft switching (CACZVS) three-phase power factor correction (PFC) converter has many advantages, such as high efficiency, high power factor, bi-directional energy flow, and soft switching of all the switches. Triple closed-loop PI controllers are used for the three-phase power factor correction converter. The control objectives of the converter include a fast transient response, high accuracy, and unity power factor. There are six parameters of the controllers that need to be tuned in order to obtain multi-objective optimization. However, six of the parameters are mutually dependent for the objectives. This is beyond the scope of the traditional experience based PI parameters tuning method. In this paper, an improved chaotic particle swarm optimization (CPSO) method has been proposed to optimize the controller parameters. In the proposed method, multi-dimensional chaotic sequences generated by spatiotemporal chaos map are used as initial particles to get a better initial distribution and to avoid local minimums. Pareto optimal solutions are also used to avoid the weight selection difficulty of the multi-objectives. Simulation and experiment results show the effectiveness and superiority of the proposed method.

Analysis of the Vibration Damping of a Single Lap Joint Beam with Partial Dampers (겹침이음부와 부분층댐퍼가 부착된 보의 진동감쇠해석)

  • 박정일;최낙삼
    • Composites Research
    • /
    • v.12 no.2
    • /
    • pp.26-35
    • /
    • 1999
  • This paper presents the vibration damping characteristic of a single lap joint beam with partial dampers analyzed using the model strain energy method and the harmonic response analysis which were based on a finite element model. The two finite element analysis methods exhibited very similar results of the resonant frequency and system loss factor which were comparable to those by the theoretical analysis. Effects of the location of partial dampers and elastic moduli and thickness of their layers on the system loss factor were studied. The damping effects due to changes of modules and loss factor of the viscoelastic layer in lap joint and partial dampers were also studied. Consequently, the geometrical and material conditions at maximizing the system loss factor were suggested.

  • PDF

Power Estimation and Optimum Design of a Buoy for the Resonant Type Wave Energy Converter Using Approximation Scheme (근사기법을 활용한 공진형 파력발전 부이의 발전량 추정 및 최적설계)

  • Koh, Hyeok-Jun;Ruy, Won-Sun;Cho, Il-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.85-92
    • /
    • 2013
  • This paper deals with the resonant type of a WEC (wave energy converter) and the determination method of its geometric parameters which were obtained to construct the robust and optimal structure, respectively. In detail, the optimization problem is formulated with the constraints composed of the response surfaces which stand for the resonance period(heave, pitch) and the meta center height of the buoy. Use of a signal-to-noise ratio calculated from normalized multi-objective results with the weight factor can help to select the robust design level. In order to get the sample data set, the motion responses of the power buoy were analyzed using the BEM (boundary element method)-based commercial code. Also, the optimization result is compared with a robust design for a feasibility study. Finally, the power efficiency of the WEC with the optimum design variables is estimated as the captured wave ratio resulting from absorbed power which mainly related to PTO (power take off) damping. It could be said that the resultant of the WEC design is the economical optimal design which satisfy the given constraints.

A study of analytical method for volatile fatty acids (VFA) by cryogenic trapping-thermal desorption (CT-TD) technique (저온농축열탈착 시스템을 연계한 유기지방산의 분석법 평가 및 검토)

  • Ahn, Ji-Won;Kim, Ki-Hyun;Im, Moon-Soon;Ju, Do-Weon
    • Analytical Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.200-211
    • /
    • 2011
  • In this study, 13 compounds including four volatile fatty acids (VFA) and nine volatile organic compounds (VOC) were analyzed by cryogenic trapping-thermal desorption technique. In order to evaluate the analytical method for VFA, calibration experiments were performed using five different sorbent materials. When the calibration results are compared between different sorbents, sampling tube filled with Carbopack X showed the highest response factor (RF) for both VFA and VOC. To validate this new analytical method for VFA using cryogenic trapping-thermal desorption technique, this method was compared with alkali absorption method recommended by the odor prevention law of the Korea Ministry of Environment (KMOE). For this purpose, unknown samples were analyzed by two different methods, i.e., cryogenic trapping-thermal desorption (TD) and alkali absorption with solid phase microextraction (SPME). When the results of two different methods were compared, ratios of concentrations determined by the two analytical methods (TD/SPME) was found as 0.46 (valeric acid) ~ 0.71 (isovaleric acid). Therefore, additional study is required to properly establish and find stable analytical conditions for VFA analysis. Furthermore, comparison between two different methods should be made with more reliable calibration approaches.

PWM-based Integral Sliding-mode Controller for Unity Input Power Factor Operation of Indirect Matrix Converter

  • Rmili, Lazhar;Hamouda, Mahmoud;Rahmani, Salem;Blanchette, Handy Fortin;Al-Haddad, Kamal
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.1048-1057
    • /
    • 2017
  • An indirect matrix converter (IMC) is a modern power generation system that enables a direct ac/ac conversion without the need for any bulky and limited lifetime electrolytic capacitor. This system also allows four-quadrant operation, generation of sinusoidal output voltage waveforms with variable frequency and amplitude, and control of input power factor. This study proposes a pulse-width modulation-based sliding-mode controller to achieve unity input-power factor operation of the IMC independently of the active power exchanged with the grid, as well as a fast dynamic response. The designed equivalent control law determines, at each sampling period, the appropriate q-axis component of the modulated input current to be injected into the grid through the LC input filter. An integral term of the error is included in the expression of the sliding surface to increase the accuracy of the control method. A double space vector modulation method is used to synthesize the direction of the space vector of the input currents as required by the sliding-mode controller and the space vectors of the target output voltages. Simulation and experimental results are provided to show the effectiveness and evaluate the performance of the proposed control method.

The Estimation of Early Health Effects for Different Combinations of Release Parameters and Meteorological Data

  • Jeong, Jongtae;Jung, Wondea
    • Nuclear Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.557-565
    • /
    • 2001
  • Variations in the number of early health effects resulting from the severe accidents of the YGN 3&4 nuclear power plants were examined for different combinations of release parameters and meteorological data . The release parameters and meteorological data were selected in combination to define a limited number of basic spectra characterized by release height, heat content, release time, warning time, wind speed, rainfall rate, and atmospheric stability class. Variant seasonal spectra were also defined in order to estimate the potential significance of seasonal variations as a factor determining the incidence or number of early health effects. The results show that there are large differences in consequences from spectrum to spectrum, although an equal amount and mix of radioactive material is released to the atmosphere in each case. Also, there are large differences in the estimated number of health effects from season to season due to distinct seasonal variations in meteorological combinations in Korea. Therefore, it is necessary to consider seasonal characteristics in developing optimum emergency response strategies.

  • PDF

Study on the Oversea Technology Development of Electric Power Storage System and It's Domestic Application (전력저장시스템 기술개발 국외동향 분석 및 국내 활용방안 연구)

  • Choi, Kyung-Shik;Yang, Seung-Kwon
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.57-60
    • /
    • 2008
  • As the technology of a large scale battery have advanced, it's application to the electric power network have been active in foreign country. By providing the electric power energy stored in the electric power storage system when needed, there are many advantages that it is able to reduce the gap between the electric power demand and supply for day and night to increase capacity factor, to upgrade the electric power quality degraded from the unbalance between power demand and supply and to compensate the fluctuation of wind power plant and photovoltaic power generation. In this study, the current application of electric power storage system using battery is introduced in detail, and I have thought out it's application fields based on the foreign examples. These are demand side response, upgrade of the power quality, stabilization of fluctuation of renewable energy and distributed generation for filling elapse.

  • PDF

A Theoretical Calculation for Angular Dependence of X-ray Beams on Extremity Phantom (말단팬텀에서 X-선 빔의 방향의존성에 관한 이론적 계산)

  • Kim, Jong-Soo;Yoon, Suk-Chul;Kim, Jang-Lyul;Kim, Kwang-Pyo
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.4
    • /
    • pp.263-271
    • /
    • 1996
  • The ANSI N13.32 recommends that a study of the angular response of a dosimeter be carried out once, although no pass/fail criterion is given for angular response. Gamma dose equivalent conversion and angular dependence factors were calculated by using MCNP code for the case of ANSI N13.32 extremity phantoms(finger and arm) at the depth of $7mg/cm^2$. Those extremity dosimeters were assumed to be irradiated from both monoenergitic photons and ISO X-ray narrow beams. These calculated gamma dose equivalent conversion and angular dependence factors were compared to B. Grosswendt's result calculated by using X-ray beams. The result showed that the dose equivalent conversion factors of this study agreed well with that of B. Grosswendt for all energies within 2% except 7% in the case of the low energies. In the case of angular dependence factors comparison, they agreed within 3%. It was shown that angular dependence factors of the finger phantom decreased as the horizontal angle of the phantom increased for the ISO X-ray beams less than 60keV. For the higher energy X-ray beams range they decreased slightly around 40 degree, but then increased from this energy to 90 degree.

  • PDF

An ionization Chamber for a Steel Sheet Thickness Measurement

  • Kim, Han-Soo;Park, Se-Hwa;Kim, Yong-Kyun;Ha, Jang-Ho;Cho, Seung-Yeon
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.3
    • /
    • pp.149-153
    • /
    • 2006
  • An ionization chamber is still widely used in many fields by virtue of its' simple operational characteristics and the possibility of its' various shapes. A parallel type of an ionization chamber for a steel sheet thickness measurement was designed and fabricated. High pure xenon gas, which was pressurized up to 6 atm, was chosen as a filling gas to increase the current response and sensitivity for a radiation. A high pressure gas system was also constructed. The active volume and the incident window size of the fabricated ionization chamber were $30\;cm^3\;and\;12\;cm^2$, respectively. Preliminary tests with a 25 mCi $^{241}Am$ gamma-ray source and evaluation tests in a standard X-ray field were performed. The optimal operation voltage was set from the results of the collection efficiency calculation by using an experimental two-voltage method. Linearity for a variation of the steel sheet thickness, which is the most important factor for an application during a steel sheet thickness measurement, was 0.989 in this study.

Experimental Evaluation of Scattered X-Ray Spectra due to X-Ray Therapeutic and Diagnosis Equipment for Eye Lens Dosimetry of Medical Staff

  • Kowatari, Munehiko;Nagamoto, Keisuke;Nakagami, Koich;Tanimura, Yoshihiko;Moritake, Takashi;Kunugita, Naoki
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.1
    • /
    • pp.39-49
    • /
    • 2022
  • Background: For proper monitoring of the eye lens dose, an appropriate calibration factor of a dosimeter and information about the mean energies of X-rays are indispensable. The scattered X-ray energy spectra should be well characterized in medical practices where eye lenses of medical staffs might be high. Materials and Methods: Scattered X-ray energy spectra were experimentally derived for three different types of X-ray diagnostic and therapeutic equipment, i.e., the computed tomography (CT) scan, the angiography and the fluoroscopy. A commercially available CdZnTe (CZT) spectrometer with a lead collimator was employed for the measurement of scattered X-rays, which was performed in the usual manner. Results and Discussion: From the obtained energy spectra, the mean energies of the scattered X-rays lied between 40 and 60 keV. This also agreed with that obtained by the conventional half value layer method. Conclusion: The scattered X-rays to which medical workers may be exposed in the region around the eyes were characterized by means of spectrometry. The obtained mean energies of the scattered X-rays were found to match the flat region of the dosimeter response.