• Title/Summary/Keyword: Energy resource

Search Result 2,081, Processing Time 0.029 seconds

Optimum Conditions for Improvement of Mechanical and Interfacial Properties of Thermal Treated Pine/CFRP Composites (열처리된 Pine/탄소섬유 복합재료의 기계적 및 계면물성 향상을 위한 최적 조건)

  • Shin, Pyeong-Su;Kim, Jong-Hyun;Park, Ha-Seung;Baek, Yeong-Min;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.30 no.4
    • /
    • pp.241-246
    • /
    • 2017
  • The brittle nature in most FRP composites is accompanying other forms of energy absorption mechanisms such as fibre-matrix interface debonding and ply delamination. It could play an important role on the energy absorption capability of composite structures. To solve the brittle nature, the adhesion between pines and composites was studied. Thermal treated pines were attached on carbon fiber reinforced polymer (CFRP) by epoxy adhesives. To find the optimum condition of thermal treatment for pine, two different thermal treatments at 160 and $200^{\circ}C$ were compared to the neat case. To evaluate mechanical and interfacial properties of pines and pine/CFRP composites, tensile, lap shear and Izod test were carried out. The bonding force of pine grains was measured by tensile test at transverse direction and the elastic wave from fracture of pines was analyzed. The mechanical, interfacial properties and bonding force at $160^{\circ}C$ treated pine were highest due to the reinforced effect of pine. However, excessive thermal treatment resulted in the degradation of hemicellulose and leads to the deterioration in mechanical and interfacial properties.

Technological Trends in Space Solar Power (우주태양광발전 기술 동향)

  • Yoon, Yong-Sik;Choe, Nam-Mi;Lee, Ho-Hyung;Choi, Jung-Su
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.7 no.2
    • /
    • pp.33-39
    • /
    • 2009
  • On 1968 Dr. Peter Glaser introduced the concept of a large solar power satellite system in a high geosynchronous orbit for collection and conversion of solar energy into an electromagnetic microwave beam to transmit usable energy to rectennas on earth. With respect to it, U.S.A, Japan, E.U., etc. noted the Space Solar Power(SSP) as a future new energy resource, performed a substantial research and the concept design, and recently announced detailed plans for realizing SSP projects. While the new technology of SSP is developing, U.S.A. and Japan have a plan to provide the electric service by using SSP 2030. This paper presents the technology trend of advanced countries and the domestic strategies on the SSP development as a green energy and a new energy resource.

  • PDF

Hydrofoil selection and design of a 50W class horizontal axis tidal current turbine model

  • Kim, Seung-Jun;Singh, Patrick Mark;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.8
    • /
    • pp.856-862
    • /
    • 2015
  • Tidal current energy is an important alternative energy resource among the various ocean energy resources available. The tidal currents in the South-Western sea of Korea can be utilized for the development of tidal current power generation. Tidal power generation can be beneficial for many fishing nurseries and nearby islands in the southwest region of Korea. Moreover, tidal power generation is necessary for promoting energy self-sufficient islands. As tidal currents are always available, power generation is predictable; thus, tidal power is a reliable renewable energy resource. The selection of an appropriate hydrofoil is important for designing a tidal current turbine. This study concentrates on the selection and numerical analysis of four different hydrofoils (MNU26, NACA63421, DU91_W2_250, and DU93_W_210LM). Blade element momentum theory is used for configuring the design of a 50 W class turbine rotor blade. The optimized blade geometry is used for computational fluid dynamics (CFD) analysis with hexahedral numerical grids. Among the four blades, NACA63421 blade showed the maximum power coefficient of 0.45 at a tip speed ratio of 6. CFD analysis is used to investigate the power coefficient, pressure coefficient, and streamline distribution of a 50 W class horizontal axis tidal current turbine for different hydrofoils.

Data intercomparison and determination of toxic and trace elements in Algae using Instrumental Neutron Activation Analysis (중성자방사화분석에 의한 Algae중의 독성미량원소의 정량 및 실험실간 비교검증)

  • Chung, Yong-Sam;Moon, Jong-Hwa;Park, Kwang-Won;Lee, KiI-Yong;Yoon, Yoon-Yeol
    • Analytical Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.346-353
    • /
    • 1999
  • For the non-destructive multi-elemental analysis of environmental and biological materials, instrumental neutron activation analysis (INAA) was applied for the determination of toxic and trace elements in a set of three Algae samples provided by the International Atomic Energy Agency (IAEA). The analytical quality control was evaluated by comparing the analytical results of two standard reference materials of the National Institute of Standards and Technology (NIST); Oyster Tissue (SRM 1566a) and Citrus Leaves (SRM 1572). According to given analytical procedure, the concentration of 15-25 elements including spiked elements such as As, Cd, Cr and Hg in Algae samples were determined. To identify and validate these results, a data intercomparison program using more than 35 analytical methods in 150 laboratories was carried out and the estimated statistical data are summarized. Result of INAA is favorable, therefore, it is illustrated that can be applied for routine analysis of essential and toxic elements in algae samples as well as analytical quality assurance.

  • PDF

Dynamic Causal Relationships between Energy Consumption and Economic Growth (에너지소비와 경제성장의 동태적 인과관계)

  • Mo, Soowon;Kim, Changbeom
    • Environmental and Resource Economics Review
    • /
    • v.12 no.2
    • /
    • pp.327-346
    • /
    • 2003
  • Unlike previous studies on the causal relationship between energy consumption and economic growth, this paper analyses the dynamic causal relationship between these variables using the dynamic vector using Johansen's multiple cointegration procedure, dynamic vector error-correction model and impulse response function. The empirical results show that while the energy consumption to a shock in income responds positively, the income responds positively to the shocks in energy consumption in the first place and then the responses become negative. We also find that the impact of energy consumption shock on the income is short-lived and causes higher inflationary pressure.

  • PDF

The Effect of Energy Efficiency Investment on Industry's Productivity Growth (에너지효율화 투자의 산업생산성 파급효과 분석)

  • Lee, Myunghun
    • Environmental and Resource Economics Review
    • /
    • v.20 no.2
    • /
    • pp.291-308
    • /
    • 2011
  • The success of a target of 'low-carbon green growth' depends on whether installing energy-saving capital would result in an increase in industry's productivity growth. Defining total factor productivity from a dual cost function, this paper estimates the contribution of energy efficiency investment to productivity growth by analyzing the sources of growth of productivity index for the primary metal industries. Empirical results show that, on average, energy efficiency investment increased the annual rate of productivity growth by 1.16 percentage points over th period 1982~2006. In addition, The scale effect positively affected the contribution of energy efficiency investment on productivity growth.

  • PDF

Effects of dietary energy levels on growth performance in lactating sows and piglets

  • Huang, Shuai Qi;Kim, In Ho
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.645-653
    • /
    • 2018
  • Twenty-five sows and 265 piglets (Landrace ${\times}$ Yorkshire) were used to evaluate the effects of dietary energy level on the pre-weaning and post-weaning performance of piglets and first parity sows. Sows with an average initial B.W. of $217.54{\pm}25.47kg$ were randomly assigned to 2 treatments. The treatments consisted of a T1 diet containing 3,100 kcal, and the T2 diet contained 3400 kcal of metabolizable energy (ME)/kg, respectively. Data were analyzed using Duncan statements to test the effect of the dietary energy levels on growth performance in lactating sows and piglets. In this study, Dietary T2 sows had a greater number of weaned piglets per litter (p < 0.05). Dietary T2 had a higher (p < 0.05) body weight than that of T1 in the weanlings, meanwhile it had a higher total average daily gain (p < 0.05) than that of T1. Dietary T1 had a higher average feed intake than that of T2 in gestation and lactation. There were no significant differences on the litter size or litter birth weight. No differences (p > 0.05) were noted in the survival of the piglets as well as in the backfat thickness and body weight loss in sows. In conclusion, these results show that high-energy diets had no effect on the body weight and backfat thickness of sows during gestation and lactation but influenced the body weight and average daily gain of weanling pigs during the lactation period.

An Estimation of Domestic Regional Energy Efficiency Using Stochastic Distance Function (확률적 거리함수를 활용한 지역별 에너지효율성 추정)

  • Jeong, Dasom;Kang, Sangmok
    • Environmental and Resource Economics Review
    • /
    • v.30 no.4
    • /
    • pp.581-605
    • /
    • 2021
  • The purpose of this study is to provide basic data for improving energy efficiency by estimating the regional energy efficiency in Korea using the stochastic frontier approach beyond the energy intensity that has been traditionally used as an indicator of energy efficiency. In this paper, energy efficiency and energy intensity efficiency were estimated as a stochastic distance function from 1998 to 2018 for 16 cities and provinces in Korea. In addition, the robustness of energy efficiency according to the capital stock estimation methods which had been mixed in previous studies was reviewed. As a result of the analysis, there is a significant change in regional rankings according to the three energy efficiency indicators, so they should be used complementary to each other. Second, while the energy efficiency improved little by little over time, the energy intensity efficiency decreased slightly though. Lastly, energy efficiency by region according to the capital stock estimation method was not robust. Care must be taken in estimating capital stock, which is important in economic analysis.

Decomposition of Direct and Indirect Energy Consumption Growth in Korea from 1990 to 2000 (한국 가정부문 직간접 에너지소비의 증가요인 분석: 1990~2000)

  • Park, Hi-Chun
    • Environmental and Resource Economics Review
    • /
    • v.15 no.3
    • /
    • pp.531-553
    • /
    • 2006
  • As energy conservation can be realized through changes in the composition of goods and services consumed, there is a need to assess indirect and total household energy requirements. The Korean household sector was responsible for about 55% of the country's primary energy requirement in the period from 1990 to 2000. And more than 60% of household energy requirement was indirect. Thus, indirect and total rather than direct household energy requirements should be the target of energy conservation policies. Increases in household consumption expenditure were responsible for a relatively high growth of energy consumption. Switching to consumption of less energy intensive products and decrease in energy intensities of products contributed substantially to reduce the increase in total household energy requirement.

  • PDF